Abstract
The effect of insulin on the appearance of the enzyme choline acetyltransferase (ChoAcT; acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6) in embryonic chicken retina neurons cultured in defined medium was studied. In the presence of a minimal level of insulin (1 ng/ml), ChoAcT activity increased with time in culture. A correspondence between the insulin concentration in the defined medium (1-100 ng/ml) and both the rate of increase and maximum attained level of ChoAcT activity was observed. Maximal ChoAcT activity was 2- to 3-fold greater in cells cultured in the presence of 100 ng of insulin per ml than in cells cultured in the presence of 1 ng of insulin per ml. To elicit maximum ChoAcT activity, insulin at 100 ng/ml was required in the medium for only the first 4 days of the culture period, at which time insulin could be reduced to maintenance levels (10 ng/ml) without affecting ChoAcT activity. Insulin binding assays performed during a 7-day culture period revealed that irrespective of the insulin concentration in the medium during culture, cell-surface insulin receptors decreased by approximately 90% between 4 and 7 days in culture. This decrease in insulin binding corresponded to the observed decrease in the sensitivity of ChoAcT activity to insulin. Our findings suggest that insulin plays a role in mediating cholinergic differentiation in the embryonic chicken retina.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler R., Manthorpe M., Varon S. Separation of neuronal and nonneuronal cells in monolayer cultures from chick embryo optic lobe. Dev Biol. 1979 Apr;69(2):424–435. doi: 10.1016/0012-1606(79)90302-6. [DOI] [PubMed] [Google Scholar]
- Aizenman Y., Weichsel M. E., Jr, de Vellis J. Changes in insulin and transferrin requirements of pure brain neuronal cultures during embryonic development. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2263–2266. doi: 10.1073/pnas.83.7.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bassas L., de Pablo F., Lesniak M. A., Roth J. Ontogeny of receptors for insulin-like peptides in chick embryo tissues: early dominance of insulin-like growth factor over insulin receptors in brain. Endocrinology. 1985 Dec;117(6):2321–2329. doi: 10.1210/endo-117-6-2321. [DOI] [PubMed] [Google Scholar]
- Bottenstein J. E., Skaper S. D., Varon S. S., Sato G. H. Selective survival of neurons from chick embryo sensory ganglionic dissociates utilizing serum-free supplemented medium. Exp Cell Res. 1980 Jan;125(1):183–190. doi: 10.1016/0014-4827(80)90202-5. [DOI] [PubMed] [Google Scholar]
- Boyd F. T., Jr, Clarke D. W., Muther T. F., Raizada M. K. Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. J Biol Chem. 1985 Dec 15;260(29):15880–15884. [PubMed] [Google Scholar]
- Boyd F. T., Jr, Raizada M. K. Effects of insulin and tunicamycin on neuronal insulin receptors in culture. Am J Physiol. 1983 Sep;245(3):C283–C287. doi: 10.1152/ajpcell.1983.245.3.C283. [DOI] [PubMed] [Google Scholar]
- Clarke D. W., Boyd F. T., Jr, Kappy M. S., Raizada M. K. Insulin binds to specific receptors and stimulates 2-deoxy-D-glucose uptake in cultured glial cells from rat brain. J Biol Chem. 1984 Oct 10;259(19):11672–11675. [PubMed] [Google Scholar]
- Clarke D. W., Mudd L., Boyd F. T., Jr, Fields M., Raizada M. K. Insulin is released from rat brain neuronal cells in culture. J Neurochem. 1986 Sep;47(3):831–836. doi: 10.1111/j.1471-4159.1986.tb00686.x. [DOI] [PubMed] [Google Scholar]
- Crisanti-Combes P., Pessac B., Calothy G. Choline acetyl transferase activity in chick embryo neuroretinas during development in ovo and in monolayer cultures. Dev Biol. 1978 Jul;65(1):228–232. doi: 10.1016/0012-1606(78)90192-6. [DOI] [PubMed] [Google Scholar]
- Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
- Freychet P., Roth J., Neville D. M., Jr Monoiodoinsulin: demonstration of its biological activity and binding to fat cells and liver membranes. Biochem Biophys Res Commun. 1971 Apr 16;43(2):400–408. doi: 10.1016/0006-291x(71)90767-4. [DOI] [PubMed] [Google Scholar]
- Hausman R. E., Katz M. S., Dobi E. T., Offermann J. Cognin distribution during differentiation of embryonic chick retinal cells in vitro. Int J Dev Neurosci. 1986;4(6):537–544. doi: 10.1016/0736-5748(86)90006-7. [DOI] [PubMed] [Google Scholar]
- Havrankova J., Roth J., Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978 Apr 27;272(5656):827–829. doi: 10.1038/272827a0. [DOI] [PubMed] [Google Scholar]
- Havrankova J., Schmechel D., Roth J., Brownstein M. Identification of insulin in rat brain. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5737–5741. doi: 10.1073/pnas.75.11.5737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyndman A. G., Adler R. GABA uptake and release in purified neuronal and nonneuronal cultures from chick embryo retina. Brain Res. 1982 Feb;255(2):167–180. doi: 10.1016/0165-3806(82)90018-9. [DOI] [PubMed] [Google Scholar]
- Kalckar H. M., Ullrey D. B., Laursen R. A. Effects of combined glutamine and serum deprivation on glucose control of hexose transport in mammalian fibroblast cultures. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5958–5961. doi: 10.1073/pnas.77.10.5958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kappy M., Sellinger S., Raizada M. Insulin binding in four regions of the developing rat brain. J Neurochem. 1984 Jan;42(1):198–203. doi: 10.1111/j.1471-4159.1984.tb09717.x. [DOI] [PubMed] [Google Scholar]
- Kessler J. A. Differential regulation of cholinergic and peptidergic development in the rat striatum in culture. Dev Biol. 1986 Jan;113(1):77–89. doi: 10.1016/0012-1606(86)90109-0. [DOI] [PubMed] [Google Scholar]
- Kessler J. A., Spray D. C., Saez J. C., Bennett M. V. Determination of synaptic phenotype: insulin and cAMP independently initiate development of electrotonic coupling between cultured sympathetic neurons. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6235–6239. doi: 10.1073/pnas.81.19.6235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Large T. H., Lambert M. P., Gremillion M. A., Klein W. L. Parallel postnatal development of choline acetyltransferase activity and muscarinic acetylcholine receptors in the rat olfactory bulb. J Neurochem. 1986 Mar;46(3):671–680. doi: 10.1111/j.1471-4159.1986.tb13024.x. [DOI] [PubMed] [Google Scholar]
- Mill J. F., Chao M. V., Ishii D. N. Insulin, insulin-like growth factor II, and nerve growth factor effects on tubulin mRNA levels and neurite formation. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7126–7130. doi: 10.1073/pnas.82.20.7126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson S. W., Kyriakis J. M., Hausman R. E. Changes in insulin binding to developing embryonic chick neural retina cells. J Neurochem. 1986 Sep;47(3):851–855. doi: 10.1111/j.1471-4159.1986.tb00689.x. [DOI] [PubMed] [Google Scholar]
- Puro D. G., Agardh E. Insulin-mediated regulation of neuronal maturation. Science. 1984 Sep 14;225(4667):1170–1172. doi: 10.1126/science.6089343. [DOI] [PubMed] [Google Scholar]
- Raizada M. K., Yang J. W., Fellows R. E. Binding of [125I]insulin to specific receptors and stimulation of nucleotide incorporation in cells cultured from rat brain. Brain Res. 1980 Nov 3;200(2):389–400. doi: 10.1016/0006-8993(80)90929-4. [DOI] [PubMed] [Google Scholar]
- White H. L., Wu J. C. Choline and carnitine acetyltransferases of heart. Biochemistry. 1973 Feb 27;12(5):841–846. doi: 10.1021/bi00729a009. [DOI] [PubMed] [Google Scholar]
- Wilson C., Peterson S. W. Insulin receptor processing as a function of erythrocyte age. A kinetic model for down-regulation. J Biol Chem. 1986 Feb 15;261(5):2123–2128. [PubMed] [Google Scholar]
