Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Nov;84(21):7532–7536. doi: 10.1073/pnas.84.21.7532

Scanning transmission electron microscopic examination of the hexagonal bilayer structures formed by the reassociation of three of the four subunits of the extracellular hemoglobin of Lumbricus terrestris.

O H Kapp 1, M G Mainwaring 1, S N Vinogradov 1, A V Crewe 1
PMCID: PMC299333  PMID: 3478710

Abstract

A fraction obtained by gel filtration at neutral pH of the extracellular Hb of Lumbricus terrestris dissociated either at pH 9.8 or at pH 4.0, consisting of the three subunits D1 (31 kDa), D2 (37 kDa), and T (50 kDa), was found to produce two peaks when subjected to gel filtration on Superose 6 at pH 7. The first peak, which was eluted at a slightly greater volume than the native Hb, consisted of reassociated hexagonal bilayer structures when examined by scanning transmission electron microscopy. The dimensions of the two reassociated hexagonal bilayer structures were a vertex-to-vertex diameter of 25 nm and a height of 16 nm. The difference in size between the hexagonal bilayer structures and the native Hb is the contribution of subunit M, which consists of a single heme-containing chain I (16.75 kDa). Although the reassociated hexagonal bilayer structures have overall dimensions smaller than the 30 nm x 20 nm dimensions of the native Hb, the diameters of the central cavities are not substantially altered. Subtraction of the three-dimensional reconstructions of the reassociated hexagonal bilayer structures from those of the native Hb showed that subunit M was primarily localized at the periphery of Lumbricus Hb. The formation of hexagonal bilayer structures in the complete absence of subunit M provides additional support for the "bracelet" model of the quaternary structure of Lumbricus Hb proposed recently by us in which subunits D1 and D2 were assumed to act as linkers for complexes of subunits M and T or to form a "bracelet" decorated with 12 complexes of subunits M and T.

Full text

PDF
7532

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andonian M. R., Barrett A. S., Vinogradov S. N. Physical properties and subunits of Haemopis grandis erythrocruorin. Biochim Biophys Acta. 1975 Dec 15;412(2):202–213. doi: 10.1016/0005-2795(75)90035-5. [DOI] [PubMed] [Google Scholar]
  2. Andonian M. R., Vinogradov S. N. Physical properties and subunits of DNA dubia erythrocruorin. Biochim Biophys Acta. 1975 Aug 19;400(2):244–254. doi: 10.1016/0005-2795(75)90178-6. [DOI] [PubMed] [Google Scholar]
  3. Chung M. C., Ellerton H. D. The subunits of Abarenicola affinis affinis (Ashworth) extracellular haemoglobin (erythrocruorin). Biochim Biophys Acta. 1982 Mar 18;702(1):17–22. doi: 10.1016/0167-4838(82)90022-x. [DOI] [PubMed] [Google Scholar]
  4. Crewe A. V., Crewe D. A., Kapp O. H. Inexact three-dimensional reconstruction of a biological macromolecule from a restricted number of projections. Ultramicroscopy. 1984;13(4):365–371. doi: 10.1016/0304-3991(84)90002-0. [DOI] [PubMed] [Google Scholar]
  5. Crewe A. V. High-resolution scanning transmission electron microscopy. Science. 1983 Jul 22;221(4608):325–330. doi: 10.1126/science.6867711. [DOI] [PubMed] [Google Scholar]
  6. Frossard P. The erythrocruorin of Eisenia fetida. I. Properties and subunit structure. Biochim Biophys Acta. 1982 Jun 24;704(3):524–534. doi: 10.1016/0167-4838(82)90076-0. [DOI] [PubMed] [Google Scholar]
  7. Kapp O. H., Polidori G., Mainwaring M. G., Crewe A. V., Vinogradov S. N. The reassociation of Lumbricus terrestris hemoglobin dissociated at alkaline pH. J Biol Chem. 1984 Jan 10;259(1):628–639. [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Mainwaring M. G., Lugo S. D., Fingal R. A., Kapp O. H., Vinogradov S. N. The dissociation of the extracellular hemoglobin of Lumbricus terrestris at acid pH and its reassociation at neutral pH. A new model of its quaternary structure. J Biol Chem. 1986 Aug 15;261(23):10899–10908. [PubMed] [Google Scholar]
  10. Pionetti J. M., Pouyet J. Molecular architecture of annelid erythrocruorins. Extracellular hemoglobin of Arenicola marina (Polychaeta). Eur J Biochem. 1980 Mar;105(1):131–138. doi: 10.1111/j.1432-1033.1980.tb04482.x. [DOI] [PubMed] [Google Scholar]
  11. Polidori G., Mainwaring M., Kosinski T., Schwarz C., Fingal R., Vinogradov S. N. The dissociation of the extracellular hemoglobin of Tubifex tubifex at extremes of pH and its reassociation upon return to neutrality. Arch Biochem Biophys. 1984 Sep;233(2):800–814. doi: 10.1016/0003-9861(84)90509-5. [DOI] [PubMed] [Google Scholar]
  12. Shlom J. M., Vinogradov S. N. A study of the subunit structure of the extracellular hemoglobin of Lumbricus terrestris. J Biol Chem. 1973 Nov 25;248(22):7904–7912. [PubMed] [Google Scholar]
  13. Vinogradov S. N., Hersey S. L., Frohman C., Jr, Kapp O. H. Subunits of the extracellular hemoglobin of Tubifex tubifex. Biochim Biophys Acta. 1979 May 23;578(1):216–222. doi: 10.1016/0005-2795(79)90129-6. [DOI] [PubMed] [Google Scholar]
  14. Vinogradov S. N., Kosinski T. F., Kapp O. H. Subunits of the extracellular hemoglobin of Arenicola marina. Biochim Biophys Acta. 1980 Feb 27;621(2):315–323. doi: 10.1016/0005-2795(80)90183-x. [DOI] [PubMed] [Google Scholar]
  15. Vinogradov S. N., Lugo S. D., Mainwaring M. G., Kapp O. H., Crewe A. V. Bracelet protein: a quaternary structure proposed for the giant extracellular hemoglobin of Lumbricus terrestris. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8034–8038. doi: 10.1073/pnas.83.21.8034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vinogradov S. N., Shlom J. M., Hall B. C., Kapp O. H., Mizukami H. The dissociation of Lumbricus terrestris hemoglobin: a model of its subunit structure. Biochim Biophys Acta. 1977 May 27;492(1):136–155. doi: 10.1016/0005-2795(77)90221-5. [DOI] [PubMed] [Google Scholar]
  17. Vinogradov S. N., Standley P. R., Mainwaring M. G., Kapp O. H., Crewe A. V. The molecular size of Myxicola infundibulum chlorocruorin and its subunits. Biochim Biophys Acta. 1985 Mar 22;828(1):43–50. doi: 10.1016/0167-4838(85)90007-x. [DOI] [PubMed] [Google Scholar]
  18. Vinogradov S. N. The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins). Comp Biochem Physiol B. 1985;82(1):1–15. doi: 10.1016/0305-0491(85)90120-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES