Abstract
31P NMR spectroscopy was utilized to evaluate intracellular pH in erythrocytes from normotensive (n = 15) and from untreated (n = 16) and treated (n = 24) human essential hypertensive individuals. Intracellular erythrocyte pH was also measured in normotensive rats on different dietary calcium intakes as well as in volume-dependent deoxycorticosterone/saline and renin-dependent, 2 kidney, 1 clip (2K-1C) Goldblatt hypertensive rat models. Untreated essential hypertensives had significantly lower intracellular pH values compared with normotensive subjects [7.17 +/- 0.02 vs. 7.28 +/- 0.02 (mean +/- SEM), significance level = 0.01]. Treated hypertensives had intracellular pH values indistinguishable from normotensives [7.27 +/- 0.02 (mean +/- SEM)]. Similarly, pH values for each rat model varied inversely with blood pressure, regardless of whether increased dietary calcium intake lowered pressure (normotensive and deoxycorticosterone/saline hypertensive rats) or elevated it (2K-1C Goldblatt hypertensive rats). These results demonstrate that lower intracellular pH values are commonly observed in various hypertensive states and suggest that they may contribute to the pathophysiology of the hypertensive process. Alterations in intracellular pH may also underlie the clinically observed linkage of hypertension with other disease syndromes, such as diabetes mellitus and obesity.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Busa W. B., Nuccitelli R. Metabolic regulation via intracellular pH. Am J Physiol. 1984 Apr;246(4 Pt 2):R409–R438. doi: 10.1152/ajpregu.1984.246.4.R409. [DOI] [PubMed] [Google Scholar]
- Erne P., Bolli P., Bürgisser E., Bühler F. R. Correlation of platelet calcium with blood pressure. Effect of antihypertensive therapy. N Engl J Med. 1984 Apr 26;310(17):1084–1088. doi: 10.1056/NEJM198404263101705. [DOI] [PubMed] [Google Scholar]
- Furspan P. B., Bohr D. F. Lymphocyte abnormalities in three types of hypertension in the rat. Hypertension. 1985 Nov-Dec;7(6 Pt 1):860–866. doi: 10.1161/01.hyp.7.6.860. [DOI] [PubMed] [Google Scholar]
- Gupta R. K., Gupta P., Moore R. D. NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng. 1984;13:221–246. doi: 10.1146/annurev.bb.13.060184.001253. [DOI] [PubMed] [Google Scholar]
- Gupta R. K., Yushok W. D. Noninvasive 31P NMR probes of free Mg2+, MgATP, and MgADP in intact Ehrlich ascites tumor cells. Proc Natl Acad Sci U S A. 1980 May;77(5):2487–2491. doi: 10.1073/pnas.77.5.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lam Y. F., Lin A. K., Ho C. A phosphorus-31 nuclear magnetic resonance investigation of intracellular environment in human normal and sickle cell blood. Blood. 1979 Jul;54(1):196–209. [PubMed] [Google Scholar]
- Lea T. J., Ashley C. C. Increase in free Ca2+ in muscle after exposure to CO2. Nature. 1978 Sep 21;275(5677):236–238. doi: 10.1038/275236a0. [DOI] [PubMed] [Google Scholar]
- Montrose M. H., Murer H. Regulation of intracellular pH in LLC-PK1 cells by Na+/H+ exchange. J Membr Biol. 1986;93(1):33–42. doi: 10.1007/BF01871016. [DOI] [PubMed] [Google Scholar]
- Moolenaar W. H., Tertoolen L. G., de Laat S. W. The regulation of cytoplasmic pH in human fibroblasts. J Biol Chem. 1984 Jun 25;259(12):7563–7569. [PubMed] [Google Scholar]
- Moon R. B., Richards J. H. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973 Oct 25;248(20):7276–7278. [PubMed] [Google Scholar]
- Pell S., D'Alonzo C. A. Some aspects of hypertension in diabetes mellitus. JAMA. 1967 Oct 2;202(1):104–110. doi: 10.1001/jama.202.1.104. [DOI] [PubMed] [Google Scholar]
- Postnov Y. V., Orlov S. N. Ion transport across plasma membrane in primary hypertension. Physiol Rev. 1985 Oct;65(4):904–945. doi: 10.1152/physrev.1985.65.4.904. [DOI] [PubMed] [Google Scholar]
- Resnick L. M., Gupta R. K., Laragh J. H. Intracellular free magnesium in erythrocytes of essential hypertension: relation to blood pressure and serum divalent cations. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6511–6515. doi: 10.1073/pnas.81.20.6511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Resnick L. M., Gupta R. K., Sosa R. E., Corbett M. L., Sealey J. E., Laragh J. H. Effects of altered dietary calcium intake in experimental hypertension: role of intracellular free magnesium. J Hypertens Suppl. 1986 Dec;4(5):S182–S185. [PubMed] [Google Scholar]
- Resnick L. M., Sosa R. E., Corbett M. L., Gertner J. M., Sealey J. E., Laragh J. H. Effects of dietary calcium on sodium volume vs. renin-dependent forms of experimental hypertension. Trans Assoc Am Physicians. 1986;99:172–179. [PubMed] [Google Scholar]
- Rink T. J., Tsien R. Y., Warner A. E. Free calcium in Xenopus embryos measured with ion-selective microelectrodes. Nature. 1980 Feb 14;283(5748):658–660. doi: 10.1038/283658a0. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Smallwood J. I., Waisman D. M., Lafreniere D., Rasmussen H. Evidence that the erythrocyte calcium pump catalyzes a Ca2+:nH+ exchange. J Biol Chem. 1983 Sep 25;258(18):11092–11097. [PubMed] [Google Scholar]
- Vaughan-Jones R. D., Lederer W. J., Eisner D. A. Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature. 1983 Feb 10;301(5900):522–524. doi: 10.1038/301522a0. [DOI] [PubMed] [Google Scholar]