Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Nov;84(21):7711–7715. doi: 10.1073/pnas.84.21.7711

Lysinuric protein intolerance mutation is expressed in the plasma membrane of cultured skin fibroblasts.

D W Smith 1, C R Scriver 1, H S Tenenhouse 1, O Simell 1
PMCID: PMC299370  PMID: 3478720

Abstract

Lysinuric protein intolerance (LPI) is an autosomal recessive phenotype consistent with impaired transport of cationic amino acids at the basolateral membrane of intestinal and renal epithelia. On the assumption that the basolateral membrane of epithelial cells and plasma membrane of parenchymal cells are functional analogues, we studied transport of cationic amino acids by cultured skin fibroblasts from LPI and control subjects matched for age, sex, and site of biopsy. We measured Na+-independent transport of radiolabeled lysine, arginine, ornithine, and homoarginine on system y+, the carrier with preference for cationic amino acids, and leucine transport on system L (as the internal control). LPI cells had increased net uptake of cationic amino acids (nmol/mg of protein) relative to leucine. LPI cells also maintained increased steady-state intracellular pools of cationic amino acids. Neither increased metabolic utilization nor increased pool size were responsible for high uptake of cationic amino acids in LPI cells. We then measured trans-stimulated efflux of homoarginine as a specific test of system y+ activity. Homoarginine efflux was significantly impaired in LPI cells (P less than 0.05), whereas leucine efflux was similar in LPI and control cells. Percent trans-stimulation of homoarginine efflux was 1.0 +/- 0.5% in homozygous LPI cells, 10 +/- 0.5% in heterozygous cells, and 22 +/- 0.5% in control cells indicating a gene-dosage effect. The LPI mutation affects system y+ asymmetrically, selectively impairing efflux in fibroblast plasma membrane. To our knowledge, this appears to be the first demonstration that the skin fibroblast can be used to study a corresponding transport defect in intestinal and renal membranes.

Full text

PDF
7711

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckett G. J., Douglas J. G., Finlayson N. D., Percy-Robb I. W. Are serum bile salt concentrations raised in hyperlipidaemia? Gut. 1980 Mar;21(3):219–222. doi: 10.1136/gut.21.3.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buchanan J. A., Rosenblatt D. S., Scriver C. R. Cultured human fibroblasts and plasma membrane vesicles to investigate transport function and the effects of genetic mutation. Ann N Y Acad Sci. 1985;456:401–403. doi: 10.1111/j.1749-6632.1985.tb14891.x. [DOI] [PubMed] [Google Scholar]
  3. Christensen H. N., Handlogten M. E. Does the non-saturable cell entry apply to the charge-free form of amino acids? Biochim Biophys Acta. 1977 Sep 5;469(2):216–220. doi: 10.1016/0005-2736(77)90184-5. [DOI] [PubMed] [Google Scholar]
  4. Christensen H. N. On the strategy of kinetic discrimination of amino acid transport systems. J Membr Biol. 1985;84(2):97–103. doi: 10.1007/BF01872207. [DOI] [PubMed] [Google Scholar]
  5. Desjeux J. F., Simell R. O., Dumontier A. M., Perheentupa J. Lysine fluxes across the jejunal epithelium in lysinuric protein intolerance. J Clin Invest. 1980 Jun;65(6):1382–1387. doi: 10.1172/JCI109802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gazzola G. C., Dall'Asta V., Guidotti G. G. The transport of neutral amino acids in cultured human fibroblasts. J Biol Chem. 1980 Feb 10;255(3):929–936. [PubMed] [Google Scholar]
  7. Groth U., Rosenberg L. E. Transport of dibasic amino acids, cystine, and tryptophan by cultured human fibroblasts: absence of a defect in cystinuria and Hartnup disease. J Clin Invest. 1972 Aug;51(8):2130–2142. doi: 10.1172/JCI107020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoffmann N., Thees M., Kinne R. Phosphate transport by isolated renal brush border vesicles. Pflugers Arch. 1976 Mar 30;362(2):147–156. doi: 10.1007/BF00583641. [DOI] [PubMed] [Google Scholar]
  9. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kato T., Mizutani N., Ban M. Renal transport of lysine and arginine in lysinuric protein intolerance. Eur J Pediatr. 1982 Nov;139(3):181–184. doi: 10.1007/BF01377352. [DOI] [PubMed] [Google Scholar]
  11. Mueckler M., Caruso C., Baldwin S. A., Panico M., Blench I., Morris H. R., Allard W. J., Lienhard G. E., Lodish H. F. Sequence and structure of a human glucose transporter. Science. 1985 Sep 6;229(4717):941–945. doi: 10.1126/science.3839598. [DOI] [PubMed] [Google Scholar]
  12. Rajantie J., Simell O., Perheentupa J. Basolateral-membrane transport defect for lysine in lysinuric protein intolerance. Lancet. 1980 Jun 7;1(8180):1219–1221. doi: 10.1016/s0140-6736(80)91679-7. [DOI] [PubMed] [Google Scholar]
  13. Rajantie J., Simell O., Perheentupa J. Lysinuric protein intolerance. Basolateral transport defect in renal tubuli. J Clin Invest. 1981 Apr;67(4):1078–1082. doi: 10.1172/JCI110120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reiser S., Christiansen P. A. The properties of Na + -dependent and Na + -independent lysine uptake by isolated intestinal epithelial cells. Biochim Biophys Acta. 1973 Apr 25;307(1):212–222. doi: 10.1016/0005-2736(73)90038-2. [DOI] [PubMed] [Google Scholar]
  15. Schneider E. L., Stanbridge E. J., Epstein C. J. Incorporation of 3H-uridine and 3H-uracil into RNA: a simple technique for the detection of mycoplasma contamination of cultured cells. Exp Cell Res. 1974 Mar 15;84(1):311–318. doi: 10.1016/0014-4827(74)90411-x. [DOI] [PubMed] [Google Scholar]
  16. Scriver C. R., McInnes R. R., Mohyuddin F. Role of epithelial architecture and intracellular metabolism in proline uptake and transtubular reclamation in PRO/re mouse kidney. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1431–1435. doi: 10.1073/pnas.72.4.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Simell O., Perheentupa J. Renal handling of diamino acids in lysinuric protein intolerance. J Clin Invest. 1974 Jul;54(1):9–17. doi: 10.1172/JCI107753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tenenhouse H. S., Scriver C. R., McInnes R. R., Glorieux F. H. Renal handling of phosphate in vivo and in vitro by the X-linked hypophosphatemic male mouse: evidence for a defect in the brush border membrane. Kidney Int. 1978 Sep;14(3):236–244. doi: 10.1038/ki.1978.115. [DOI] [PubMed] [Google Scholar]
  19. White M. F., Christensen H. N. Cationic amino acid transport into cultured animal cells. II. Transport system barely perceptible in ordinary hepatocytes, but active in hepatoma cell lines. J Biol Chem. 1982 Apr 25;257(8):4450–4457. [PubMed] [Google Scholar]
  20. White M. F., Christensen H. N. The two-way flux of cationic amino acids across the plasma membrane of mammalian cells is largely explained by a single transport system. J Biol Chem. 1982 Sep 10;257(17):10069–10080. [PubMed] [Google Scholar]
  21. White M. F., Gazzola G. C., Christensen H. N. Cationic amino acid transport into cultured animal cells. I. Influx into cultured human fibroblasts. J Biol Chem. 1982 Apr 25;257(8):4443–4449. [PubMed] [Google Scholar]
  22. White M. F. The transport of cationic amino acids across the plasma membrane of mammalian cells. Biochim Biophys Acta. 1985 Dec 9;822(3-4):355–374. doi: 10.1016/0304-4157(85)90015-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES