Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Nov;84(22):7948–7952. doi: 10.1073/pnas.84.22.7948

A yeast mutant conditionally defective only for reentry into the mitotic cell cycle from stationary phase.

M A Drebot 1, G C Johnston 1, R A Singer 1
PMCID: PMC299453  PMID: 3317397

Abstract

We report the isolation of a cold-sensitive mutant of the yeast Saccharomyces cerevisiae that is conditionally defective only for reentry into the mitotic cell cycle from stationary phase. Although actively dividing mutant cells shifted to the restrictive temperature continued to divide, stationary-phase mutant cells placed in fresh medium at the restrictive temperature failed to divide or even perform the cell cycle regulatory step "start" but did lose the characteristic stationary-phase properties of thermotolerance, accumulation of storage carbohydrates, and resistance to cell-wall-lytic enzymes. Order-of-function analysis indicated that the cold-sensitive defect blocked cells during reentry before start of the first mitotic cell cycle. Genetic analysis showed that the mutant phenotype is due to the interaction between two mutations, a cold-sensitive mutation gcs1 and a suppressor mutation sed1. These mutations thus provide the genetic basis for further analysis of stationary phase and the G0 state.

Full text

PDF
7948

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baserga R. Resting cells and the G1 phase of the cell cycle. J Cell Physiol. 1978 Jun;95(3):377–382. doi: 10.1002/jcp.1040950316. [DOI] [PubMed] [Google Scholar]
  2. Bücking-Throm E., Duntze W., Hartwell L. H., Manney T. R. Reversible arrest of haploid yeast cells in the initiation of DNA synthesis by a diffusible sex factor. Exp Cell Res. 1973 Jan;76(1):99–110. doi: 10.1016/0014-4827(73)90424-2. [DOI] [PubMed] [Google Scholar]
  3. Fraenkel D. G. On ras gene function in yeast. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4740–4744. doi: 10.1073/pnas.82.14.4740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hartwell L. H., Culotti J., Reid B. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci U S A. 1970 Jun;66(2):352–359. doi: 10.1073/pnas.66.2.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartwell L. H. Periodic density fluctuation during the yeast cell cycle and the selection of synchronous cultures. J Bacteriol. 1970 Dec;104(3):1280–1285. doi: 10.1128/jb.104.3.1280-1285.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hartwell L. H. Saccharomyces cerevisiae cell cycle. Bacteriol Rev. 1974 Jun;38(2):164–198. doi: 10.1128/br.38.2.164-198.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ide T., Ninomiya J., Ishibashi S. Isolation of a G0-specific ts mutant from a Fischer rat cell line, 3Y1. Exp Cell Res. 1984 Jan;150(1):60–67. doi: 10.1016/0014-4827(84)90701-8. [DOI] [PubMed] [Google Scholar]
  10. Iida H., Yahara I. Durable synthesis of high molecular weight heat shock proteins in G0 cells of the yeast and other eucaryotes. J Cell Biol. 1984 Jul;99(1 Pt 1):199–207. doi: 10.1083/jcb.99.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iida H., Yahara I. Specific early-G1 blocks accompanied with stringent response in Saccharomyces cerevisiae lead to growth arrest in resting state similar to the G0 of higher eucaryotes. J Cell Biol. 1984 Apr;98(4):1185–1193. doi: 10.1083/jcb.98.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnston G. C., Pringle J. R., Hartwell L. H. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res. 1977 Mar 1;105(1):79–98. doi: 10.1016/0014-4827(77)90154-9. [DOI] [PubMed] [Google Scholar]
  13. Johnston G. C., Singer R. A., McFarlane S. Growth and cell division during nitrogen starvation of the yeast Saccharomyces cerevisiae. J Bacteriol. 1977 Nov;132(2):723–730. doi: 10.1128/jb.132.2.723-730.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnston G. C., Singer R. A. RNA synthesis and control of cell division in the yeast S. cerevisiae. Cell. 1978 Aug;14(4):951–958. doi: 10.1016/0092-8674(78)90349-5. [DOI] [PubMed] [Google Scholar]
  15. Johnston S. A., Hopper J. E. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6971–6975. doi: 10.1073/pnas.79.22.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LAJTHA L. G. ON THE CONCEPT OF THE CELL CYCLE. J Cell Physiol. 1963 Oct;62:SUPPL1–SUPPL1:145. [PubMed] [Google Scholar]
  17. Lillie S. H., Pringle J. R. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980 Sep;143(3):1384–1394. doi: 10.1128/jb.143.3.1384-1394.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mortimer R. K., Hawthorne D. C. Genetic mapping in Saccharomyces. Genetics. 1966 Jan;53(1):165–173. doi: 10.1093/genetics/53.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pardee A. B., Dubrow R. Control of cell proliferation. Cancer. 1977 Jun;39(6 Suppl):2747–2754. doi: 10.1002/1097-0142(197706)39:6<2747::aid-cncr2820390662>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  20. Paris S., Pringle J. R. Saccharomyces cerevisiae: heat and gluculase sensitivities of starved cells. Ann Microbiol (Paris) 1983 Nov-Dec;134B(3):379–385. [PubMed] [Google Scholar]
  21. Piñon R. A probe into nuclear events during the cell cycle of Saccharomyces cerevisiae: studies of folded chromosomes in cdc mutants which arrest in G1. Chromosoma. 1979 Jan 31;70(3):337–352. doi: 10.1007/BF00328771. [DOI] [PubMed] [Google Scholar]
  22. Piñon R. Folded chromosomes in non-cycling yeast cells: evidence for a characteristic g0 form. Chromosoma. 1978 Jul 31;67(3):263–274. doi: 10.1007/BF02569039. [DOI] [PubMed] [Google Scholar]
  23. Pringle J. R. The use of conditional lethal cell cycle mutants for temporal and functional sequence mapping of cell cycle events. J Cell Physiol. 1978 Jun;95(3):393–405. doi: 10.1002/jcp.1040950318. [DOI] [PubMed] [Google Scholar]
  24. Schenberg-Frascino A., Moustacchi E. Lethal and mutagenic effects of elevated temperature on haploid yeast. I. Variations in sensitivity during the cell cycle. Mol Gen Genet. 1972;115(3):243–257. doi: 10.1007/BF00268888. [DOI] [PubMed] [Google Scholar]
  25. Singer R. A., Bedard D. P., Johnston G. C. Bud formation by the yeast Saccharomyces cerevisiae is directly dependent on "start". J Cell Biol. 1984 Feb;98(2):678–684. doi: 10.1083/jcb.98.2.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thomas D. B. Regulation of the mammalian cell cycle in vitro? Biochem Soc Trans. 1977;5(6):1801–1808. doi: 10.1042/bst0051801. [DOI] [PubMed] [Google Scholar]
  27. Yanishevsky R. M., Stein G. H. Regulation of the cell cycle in eukaryotic cells. Int Rev Cytol. 1981;69:223–259. doi: 10.1016/s0074-7696(08)62324-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES