Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Nov;84(22):8165–8168. doi: 10.1073/pnas.84.22.8165

Major role for neuronal death during brain development: refinement of topographical connections.

S Catsicas 1, S Thanos 1, P G Clarke 1
PMCID: PMC299499  PMID: 3479784

Abstract

The precision of the topographic projection from the isthmo-optic nucleus (ION) to the retina has been examined in chicken embryos and chicks by the retrograde transport of a fluorescent carbocyanine dye from restricted retinal sites. At all ages, the labeled neurons are most numerous in the topographically appropriate part of the ION, but in younger embryos up to 49% of them are found outside this region. The distribution of these "aberrantly" projecting neurons is variable, but they generally occur throughout the entire ION. They all die during the ION's period of neuronal death, accounting for most of the 60% cell loss that then occurs. We therefore suggest that a major role of neuronal death during brain development is to reduce the imprecision of neuronal connections.

Full text

PDF
8165

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerbach R., Kubai L., Knighton D., Folkman J. A simple procedure for the long-term cultivation of chicken embryos. Dev Biol. 1974 Dec;41(2):391–394. doi: 10.1016/0012-1606(74)90316-9. [DOI] [PubMed] [Google Scholar]
  2. Bennett M. R., Lai K. Cell death during development of the topographical distributions of cutaneous sensory neurons in amphibian ganglia. Dev Biol. 1981 Aug;86(1):224–226. doi: 10.1016/0012-1606(81)90333-x. [DOI] [PubMed] [Google Scholar]
  3. Brown M. C., Booth C. M. Postnatal development of the adult pattern of motor axon distribution in rat muscle. Nature. 1983 Aug 25;304(5928):741–742. doi: 10.1038/304741a0. [DOI] [PubMed] [Google Scholar]
  4. Bunt S. M., Lund R. D. Development of a transient retino-retinal pathway in hooded and albino rats. Brain Res. 1981 May 4;211(2):399–404. doi: 10.1016/0006-8993(81)90712-5. [DOI] [PubMed] [Google Scholar]
  5. Catsicas S., Catsicas M., Clarke P. G. Long-distance intraretinal connections in birds. Nature. 1987 Mar 12;326(6109):186–187. doi: 10.1038/326186a0. [DOI] [PubMed] [Google Scholar]
  6. Clarke P. G. Chance, repetition, and error in the development of normal nervous systems. Perspect Biol Med. 1981 Autumn;25(1):2–17. doi: 10.1353/pbm.1981.0057. [DOI] [PubMed] [Google Scholar]
  7. Clarke P. G., Cowan W. M. The development of the isthmo-optic tract in the chick, with special reference to the occurrence and correction of developmental errors in the location and connections of isthmo-optic neurons. J Comp Neurol. 1976 May 15;167(2):143–164. doi: 10.1002/cne.901670203. [DOI] [PubMed] [Google Scholar]
  8. Clarke P. G., Rogers L. A., Cowan W. M. The time of origin and the pattern of survival of neurons in the isthmo-optic nucleus of the chick. J Comp Neurol. 1976 May 15;167(2):125–142. doi: 10.1002/cne.901670202. [DOI] [PubMed] [Google Scholar]
  9. Cowan W. M., Fawcett J. W., O'Leary D. D., Stanfield B. B. Regressive events in neurogenesis. Science. 1984 Sep 21;225(4668):1258–1265. doi: 10.1126/science.6474175. [DOI] [PubMed] [Google Scholar]
  10. Crossland W. J., Cowan W. M., Rogers L. A., Kelly J. P. The specification of the retino-tectal projection in the chick. J Comp Neurol. 1974 May 15;155(2):127–164. doi: 10.1002/cne.901550202. [DOI] [PubMed] [Google Scholar]
  11. Honig M. G., Hume R. I. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol. 1986 Jul;103(1):171–187. doi: 10.1083/jcb.103.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Innocenti G. M. Growth and reshaping of axons in the establishment of visual callosal connections. Science. 1981 May 15;212(4496):824–827. doi: 10.1126/science.7221566. [DOI] [PubMed] [Google Scholar]
  13. Lamb A. H. Motoneuron death in the embryo. CRC Crit Rev Clin Neurobiol. 1984;1(2):141–179. [PubMed] [Google Scholar]
  14. Landmesser L. T. The generation of neuromuscular specificity. Annu Rev Neurosci. 1980;3:279–302. doi: 10.1146/annurev.ne.03.030180.001431. [DOI] [PubMed] [Google Scholar]
  15. Landmesser L., Honig M. G. Altered sensory projections in the chick hind limb following the early removal of motoneurons. Dev Biol. 1986 Dec;118(2):511–531. doi: 10.1016/0012-1606(86)90023-0. [DOI] [PubMed] [Google Scholar]
  16. McGill J. I., Powell T. P., Cowan W. M. The organization of the projection of the centrifugal fibres to the retina in the pigeon. J Anat. 1966 Jan;100(Pt 1):35–49. [PMC free article] [PubMed] [Google Scholar]
  17. McLoon S. C. Alterations in precision of the crossed retinotectal projection during chick development. Science. 1982 Mar 12;215(4538):1418–1420. doi: 10.1126/science.7063855. [DOI] [PubMed] [Google Scholar]
  18. McLoon S. C., Lund R. D. Transient retinofugal pathways in the developing chick. Exp Brain Res. 1982;45(1-2):277–284. doi: 10.1007/BF00235788. [DOI] [PubMed] [Google Scholar]
  19. Miles F. A. Centrifugal control of the avian retina. II. Receptive field properties of cells in the isthmo-optic nucleus. Brain Res. 1972 Dec 24;48:93–113. doi: 10.1016/0006-8993(72)90172-2. [DOI] [PubMed] [Google Scholar]
  20. O'Leary D. D., Cowan W. M. Further studies on the development of the isthmo-optic nucleus with special reference to the occurrence and fate of ectopic and ipsilaterally projecting neurons. J Comp Neurol. 1982 Dec 20;212(4):399–416. doi: 10.1002/cne.902120407. [DOI] [PubMed] [Google Scholar]
  21. O'Leary D. D., Fawcett J. W., Cowan W. M. Topographic targeting errors in the retinocollicular projection and their elimination by selective ganglion cell death. J Neurosci. 1986 Dec;6(12):3692–3705. doi: 10.1523/JNEUROSCI.06-12-03692.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. O'Leary D. D., Stanfield B. B., Cowan W. M. Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons. Brain Res. 1981 Jul;227(4):607–617. doi: 10.1016/0165-3806(81)90012-2. [DOI] [PubMed] [Google Scholar]
  23. Thanos S., Bonhoeffer F. Axonal arborization in the developing chick retinotectal system. J Comp Neurol. 1987 Jul 1;261(1):155–164. doi: 10.1002/cne.902610114. [DOI] [PubMed] [Google Scholar]
  24. Thanos S., Bonhoeffer F. Development of the transient ipsilateral retinotectal projection in the chick embryo: a numerical fluorescence-microscopic analysis. J Comp Neurol. 1984 Apr 10;224(3):407–414. doi: 10.1002/cne.902240308. [DOI] [PubMed] [Google Scholar]
  25. Thanos S., Bonhoeffer F. Investigations on the development and topographic order of retinotectal axons: anterograde and retrograde staining of axons and perikarya with rhodamine in vivo. J Comp Neurol. 1983 Oct 1;219(4):420–430. doi: 10.1002/cne.902190404. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES