Abstract
The conformation of L-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) has been derived from electron-density maps calculated at 2.8-A resolution with phases obtained from two heavy-atom derivatives and the bound coenzyme, NAD. Like other dehydrogenases, 3-hydroxyacyl-CoA dehydrogenase is a double-domain structure, but the bilobal nature of this enzyme is more pronounced than has been previously observed. The amino-terminal domain, which comprises approximately the first 200 residues, is responsible for binding the NAD cofactor and displays considerable structural homology with the dinucleotide binding domains observed in other NAD-, NADP-, and FAD-dependent enzymes. The carboxyl-terminal domain, comprising the remaining 107 residues, appears to be all alpha-helical and bears little homology to other known dehydrogenases. The subunit-subunit interface in the 3-hydroxyacyl-CoA dehydrogenase dimer is formed almost exclusively by residues in the smaller helical domain. A difference map between the apo and holo forms of the crystalline enzyme has been interpreted in terms of the NAD molecule being bound in a typically extended conformation. The location of the coenzyme binding site, along with the structural homology to other dehydrogenases, makes it possible to speculate about the location of the binding site for the fatty acyl-CoA substrate.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barry C. D., Bosshard H. E., Ellis R. A., Marshall G. R. Evolving macromodular molecular modeling system. Fed Proc. 1974 Dec;33(12):2368–2372. [PubMed] [Google Scholar]
- Birktoft J. J., Banaszak L. J. The presence of a histidine-aspartic acid pair in the active site of 2-hydroxyacid dehydrogenases. X-ray refinement of cytoplasmic malate dehydrogenase. J Biol Chem. 1983 Jan 10;258(1):472–482. doi: 10.2210/pdb2mdh/pdb. [DOI] [PubMed] [Google Scholar]
- Bitar K. G., Perez-Aranda A., Bradshaw R. A. Amino acid sequence of L-3-hydroxyacyl CoA dehydrogenase from pig heart muscle. FEBS Lett. 1980 Jul 28;116(2):196–198. doi: 10.1016/0014-5793(80)80642-9. [DOI] [PubMed] [Google Scholar]
- Glatthaar B. E., Barbarash G. R., Noyes B. E., Banaszak L. J., Bradshaw R. A. The preparation of the cytoplasmic and mitochondrial forms of malate dehydrogenase and aspartate aminotransferase from pig heart by a single procedure. Anal Biochem. 1974 Feb;57(2):432–451. doi: 10.1016/0003-2697(74)90099-2. [DOI] [PubMed] [Google Scholar]
- Hamlin R. Multiwire area X-ray diffractometers. Methods Enzymol. 1985;114:416–452. doi: 10.1016/0076-6879(85)14029-2. [DOI] [PubMed] [Google Scholar]
- Holden H. M., Banaszak L. J. L-3-hydroxyacyl coenzyme A dehydrogenase. The location of NAD binding sites and the bilobal subunit structure. J Biol Chem. 1983 Feb 25;258(4):2383–2389. [PubMed] [Google Scholar]
- Howard A. J., Nielsen C., Xuong N. H. Software for a diffractometer with multiwire area detector. Methods Enzymol. 1985;114:452–472. doi: 10.1016/0076-6879(85)14030-9. [DOI] [PubMed] [Google Scholar]
- Huber R., Bennett W. S., Jr Functional significance of flexibility in proteins. Biopolymers. 1983 Jan;22(1):261–279. doi: 10.1002/bip.360220136. [DOI] [PubMed] [Google Scholar]
- Moras D., Olsen K. W., Sabesan M. N., Buehner M., Ford G. C., Rossmann M. G. Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 1975 Dec 10;250(23):9137–9162. doi: 10.2210/pdb1gpd/pdb. [DOI] [PubMed] [Google Scholar]
- Noyes B. E., Bradshaw R. A. L-3-hydroxyacyl coenzyme A dehydrogenase from pig heart muscle. I. Purification and properties. J Biol Chem. 1973 May 10;248(9):3052–3059. [PubMed] [Google Scholar]
- Noyes B. E., Bradshaw R. A. L-3-hydroxyacyl coenzyme A dehydrogenase from pig heart muscle. II. Subunit structure. J Biol Chem. 1973 May 10;248(9):3061–3066. [PubMed] [Google Scholar]
- Noyes B. E., Glatthaar B. E., Garavelli J. S., Bradshaw R. A. Structural and functional similarities between mitochondrial malate dehydrogenase and L-3-hydroxyacyl CoA dehydrogenase. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1334–1338. doi: 10.1073/pnas.71.4.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozasa H., Furuta S., Miyazawa S., Osumi T., Hashimoto T., Mori M., Miura S., Tatibana M. Biosynthesis of enzymes of rat-liver mitochondrial beta-oxidation. Eur J Biochem. 1984 Nov 2;144(3):453–458. doi: 10.1111/j.1432-1033.1984.tb08487.x. [DOI] [PubMed] [Google Scholar]
- Parks E. H., Ernst S. R., Hamlin R., Xuong N. H., Hackert M. L. Structure determination of histidine decarboxylase from Lactobacillus 30a at 3.0 A resolution. J Mol Biol. 1985 Apr 5;182(3):455–465. doi: 10.1016/0022-2836(85)90204-9. [DOI] [PubMed] [Google Scholar]
- Schulz G. E., Schirmer R. H., Sachsenheimer W., Pai E. F. The structure of the flavoenzyme glutathione reductase. Nature. 1978 May 11;273(5658):120–124. doi: 10.1038/273120a0. [DOI] [PubMed] [Google Scholar]
- Sheriff S., Herriott J. R. Structure of ferredoxin-NADP oxidoreductase and the location on the NADP binding site. Results at 3-7 A resolution. J Mol Biol. 1981 Jan 15;145(2):441–451. doi: 10.1016/0022-2836(81)90214-x. [DOI] [PubMed] [Google Scholar]
- WAKIL S. J., GREEN D. E., MII S., MAHLER H. R. Studies on the fatty acid oxidizing system of animal tissues. VI. beta-Hydroxyacyl coenzyme A dehydrogenase. J Biol Chem. 1954 Apr;207(2):631–638. [PubMed] [Google Scholar]
- Wang B. C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 1985;115:90–112. doi: 10.1016/0076-6879(85)15009-3. [DOI] [PubMed] [Google Scholar]
- Weininger M. S., Banaszak L. J. Mitochondrial malate dehydrogenase. Crystallographic properties of the pig heart enzyme. J Mol Biol. 1978 Mar 5;119(3):443–449. doi: 10.1016/0022-2836(78)90224-3. [DOI] [PubMed] [Google Scholar]
- Wiegand G., Remington S., Deisenhofer J., Huber R. Crystal structure analysis and molecular model of a complex of citrate synthase with oxaloacetate and S-acetonyl-coenzyme A. J Mol Biol. 1984 Mar 25;174(1):205–219. doi: 10.1016/0022-2836(84)90373-5. [DOI] [PubMed] [Google Scholar]
