Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Dec;84(24):9180–9184. doi: 10.1073/pnas.84.24.9180

Antigenicity and native structure of globular proteins: low frequency of peptide reactive antibodies.

R Jemmerson 1
PMCID: PMC299716  PMID: 2447585

Abstract

Recent reports that peptides can frequently mimic epitopes on globular proteins are inconsistent with early studies demonstrating that antibodies to native globular proteins generally do not bind peptides. This discrepancy could result from current confusion of two different populations of antibodies in antisera: one reacting with peptides and denatured protein and the other reacting only with the native protein. To test this possibility, several hundred monoclonal antibodies to rat cytochrome c were examined by ELISA for binding the intact protein and cyanogen bromide-cleaved peptides. Inhibition by soluble native cytochrome c identified which antibodies were specific for the native protein. The vast majority of these antibodies did not bind the peptides, whereas most of the antibodies specific for denatured forms did bind them. The results are consistent with the idea that antibodies to denatured antigen are readily detected in solid-phase assays, where some antigen molecules denature as they attach to microtiter plates, and show that these antibodies are generally the ones that react with peptides. Thus, reevaluation of data suggesting that anti-native globular protein antibodies bind peptides is warranted.

Full text

PDF
9180

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atassi M. Z. Antigenic structure of myoglobin: the complete immunochemical anatomy of a protein and conclusions relating to antigenic structures of proteins. Immunochemistry. 1975 May;12(5):423–438. doi: 10.1016/0019-2791(75)90010-5. [DOI] [PubMed] [Google Scholar]
  2. Atassi M. Z. Immune recognition of cytochrome C. I. Investigation by synthesis whether antigenic sites of polymeric cytochrome coincide with locations of sequence differences between the immunizing and host cytochromes. Mol Immunol. 1981 Nov;18(11):1021–1025. doi: 10.1016/0161-5890(81)90121-8. [DOI] [PubMed] [Google Scholar]
  3. Atassi M. Z. Precise determination of the entire antigenic structure of lysozyme: molecular features of protein antigenic structures and potential of "surface-simulation" synthesis--a powerful new concept for protein binding sites. Immunochemistry. 1978 Dec;15(12):909–936. doi: 10.1016/0161-5890(78)90126-8. [DOI] [PubMed] [Google Scholar]
  4. BROWN R. K., DELANEY R., LEVINE L., VAN VUNAKIS H. Studies on the antigenic structure of ribonuclease. I. General role of hydrogen and disulfide bonds. J Biol Chem. 1959 Aug;234(8):2043–2049. [PubMed] [Google Scholar]
  5. BROWN R. K. Studies on the antigenic structure of ribonuclease. III. Inhibition by peptides of antibody to performic acid-oxidized ribonuclease. J Biol Chem. 1962 Apr;237:1162–1167. [PubMed] [Google Scholar]
  6. Benjamin D. C., Berzofsky J. A., East I. J., Gurd F. R., Hannum C., Leach S. J., Margoliash E., Michael J. G., Miller A., Prager E. M. The antigenic structure of proteins: a reappraisal. Annu Rev Immunol. 1984;2:67–101. doi: 10.1146/annurev.iy.02.040184.000435. [DOI] [PubMed] [Google Scholar]
  7. CEBRA J. J. Studies on the combining sites of the protein antigen silk fibroin. III. Inhibition of the silk fibroin-antifibroin system by peptides derived from the antigen. J Immunol. 1961 Feb;86:205–214. [PubMed] [Google Scholar]
  8. Carlson S. S., Mross G. A., Wilson A. C., Mead R. T., Wolin L. D., Bowers S. F., Foley N. T., Muijsers A. O., Margoliash E. Primary structure of mouse, rat, and guinea pig cytochrome c. Biochemistry. 1977 Apr 5;16(7):1437–1442. doi: 10.1021/bi00626a031. [DOI] [PubMed] [Google Scholar]
  9. Friguet B., Djavadi-Ohaniance L., Goldberg M. E. Some monoclonal antibodies raised with a native protein bind preferentially to the denatured antigen. Mol Immunol. 1984 Jul;21(7):673–677. doi: 10.1016/0161-5890(84)90053-1. [DOI] [PubMed] [Google Scholar]
  10. Getzoff E. D., Geysen H. M., Rodda S. J., Alexander H., Tainer J. A., Lerner R. A. Mechanisms of antibody binding to a protein. Science. 1987 Mar 6;235(4793):1191–1196. doi: 10.1126/science.3823879. [DOI] [PubMed] [Google Scholar]
  11. Geysen H. M., Rodda S. J., Mason T. J. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol. 1986 Jul;23(7):709–715. doi: 10.1016/0161-5890(86)90081-7. [DOI] [PubMed] [Google Scholar]
  12. Geysen H. M., Tainer J. A., Rodda S. J., Mason T. J., Alexander H., Getzoff E. D., Lerner R. A. Chemistry of antibody binding to a protein. Science. 1987 Mar 6;235(4793):1184–1190. doi: 10.1126/science.3823878. [DOI] [PubMed] [Google Scholar]
  13. Hollander Z., Katchalski-Katzir E. Use of monoclonal antibodies to detect conformational alterations in lactate dehydrogenase isoenzyme 5 on heat denaturation and on adsorption to polystyrene plates. Mol Immunol. 1986 Sep;23(9):927–933. doi: 10.1016/0161-5890(86)90122-7. [DOI] [PubMed] [Google Scholar]
  14. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jemmerson R., Morrow P. R., Klinman N. R., Paterson Y. Analysis of an evolutionarily conserved antigenic site on mammalian cytochrome c using synthetic peptides. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1508–1512. doi: 10.1073/pnas.82.5.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jemmerson R. Multiple overlapping epitopes in the three antigenic regions of horse cytochrome c1. J Immunol. 1987 Jan 1;138(1):213–219. [PubMed] [Google Scholar]
  17. Jemmerson R., Paterson Y. Mapping epitopes on a protein antigen by the proteolysis of antigen-antibody complexes. Science. 1986 May 23;232(4753):1001–1004. doi: 10.1126/science.2422757. [DOI] [PubMed] [Google Scholar]
  18. Jemmerson R. Polypeptide fragments of horse cytochrome c activate a small subset of secondary B lymphocytes primed against the native protein. J Immunol. 1987 Sep 15;139(6):1939–1945. [PubMed] [Google Scholar]
  19. Klinman N. R. Antibody with homogeneous antigen binding produced by splenic foci in organ culture. Immunochemistry. 1969 Sep;6(5):757–759. doi: 10.1016/0019-2791(67)90140-1. [DOI] [PubMed] [Google Scholar]
  20. Klinman N. R. The mechanism of antigenic stimulation of primary and secondary clonal precursor cells. J Exp Med. 1972 Aug 1;136(2):241–260. doi: 10.1084/jem.136.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MARGOLIASH E., SMITH E. L., KREIL G., TUPPY H. Amino-acid sequence of horse heart cytochrome c. Nature. 1961 Dec 23;192:1125–1127. doi: 10.1038/1921125a0. [DOI] [PubMed] [Google Scholar]
  22. Moudallal Z. A., Briand J. P., Regenmortel M. H. A major part of the polypeptide chain of tobacco mosaic virus protein is antigenic. EMBO J. 1985 May;4(5):1231–1235. doi: 10.1002/j.1460-2075.1985.tb03765.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nisonoff A., Margoliash E., Reichlin M. Antibodies to rabbit cytochrome c arising in rabbits. Science. 1967 Mar 10;155(3767):1273–1275. doi: 10.1126/science.155.3767.1273. [DOI] [PubMed] [Google Scholar]
  24. Nisonoff A., Reichlin M., Margoliash E. Immunological activity of cytochrome c. II. Localization of a major antigenic determinant of human cytochrome c. J Biol Chem. 1970 Mar 10;245(5):940–946. [PubMed] [Google Scholar]
  25. Parish C. R., Wistar R., Ada G. L. Cleavage of bacterial flagellin with cyanogen bromide. Antigenic properties of the protein fragments. Biochem J. 1969 Jul;113(3):501–506. doi: 10.1042/bj1130501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Paterson Y. Delineation and conformational analysis of two synthetic peptide models of antigenic sites on rodent cytochrome c. Biochemistry. 1985 Feb 12;24(4):1048–1055. doi: 10.1021/bi00325a037. [DOI] [PubMed] [Google Scholar]
  27. Reichlin M. Localizing antigenic determinants in human haemoglobin with mutants: molecular correlations of immunological tolerance. J Mol Biol. 1972 Mar 14;64(2):485–496. doi: 10.1016/0022-2836(72)90512-8. [DOI] [PubMed] [Google Scholar]
  28. Scibienski R. J. Denaturation of lysozyme by Freund's complete adjuvant. J Immunol. 1973 Jul;111(1):114–120. [PubMed] [Google Scholar]
  29. Wilson I. A., Niman H. L., Houghten R. A., Cherenson A. R., Connolly M. L., Lerner R. A. The structure of an antigenic determinant in a protein. Cell. 1984 Jul;37(3):767–778. doi: 10.1016/0092-8674(84)90412-4. [DOI] [PubMed] [Google Scholar]
  30. Young J. D., Leung C. Y. Immunochemical studies on lysozyme and carboxymethylated lysozyme. Biochemistry. 1970 Jul 7;9(14):2755–2762. doi: 10.1021/bi00816a001. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES