Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Dec;84(24):9295–9298. doi: 10.1073/pnas.84.24.9295

From behavior to membranes: testosterone-induced changes in action potential duration in electric organs.

A H Bass 1, S F Volman 1
PMCID: PMC299740  PMID: 3480543

Abstract

The electric organ of mormyrid fishes consists of action potential-generating cells called electrocytes, which together produce a pulse-like electric organ discharge (EOD). The appearance of an EOD depends, in part, on the characteristic features of a single electrocyte's action potentials. In some species, gonadal steroid hormones induce increases in EOD duration, which mimic natural sex differences. We now show that testosterone-induced changes in EOD duration are associated with a 2- to 3-fold increase in the duration of action potentials generated by single electrocytes. Together with other anatomical and biochemical data, the results emphasize the exquisite interrelationship between steroid hormone action and the cellular machinery determining the electrical properties of single cells that underlie sexually dimorphic and seasonal behaviors.

Full text

PDF
9295

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold A. P., Gorski R. A. Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci. 1984;7:413–442. doi: 10.1146/annurev.ne.07.030184.002213. [DOI] [PubMed] [Google Scholar]
  2. BENNETT M. V., GRUNDFEST H. Electrophysiology of electric organ in Gymnotus carapo. J Gen Physiol. 1959 May 20;42(5):1067–1104. doi: 10.1085/jgp.42.5.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bass A. H., Denizot J. P., Marchaterre M. A. Ultrastructural features and hormone-dependent sex differences of mormyrid electric organs. J Comp Neurol. 1986 Dec 22;254(4):511–528. doi: 10.1002/cne.902540405. [DOI] [PubMed] [Google Scholar]
  4. Bass A. H., Segil N., Kelley D. B. Androgen binding in the brain and electric organ of a mormyrid fish. J Comp Physiol A. 1986 Oct;159(4):535–544. doi: 10.1007/BF00604173. [DOI] [PubMed] [Google Scholar]
  5. Bass A. H. Species differences in electric organs of mormyrids: substrates for species-typical electric organ discharge waveforms. J Comp Neurol. 1986 Feb 15;244(3):313–330. doi: 10.1002/cne.902440305. [DOI] [PubMed] [Google Scholar]
  6. Bennett M. V., Pappas G. D., Aljure E., Nakajima Y. Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J Neurophysiol. 1967 Mar;30(2):180–208. doi: 10.1152/jn.1967.30.2.180. [DOI] [PubMed] [Google Scholar]
  7. Hopkins C. D., Bass A. H. Temporal coding of species recognition signals in an electric fish. Science. 1981 Apr 3;212(4490):85–87. doi: 10.1126/science.7209524. [DOI] [PubMed] [Google Scholar]
  8. KEYNES R. D., MARTINS-FERREIRA H. Membrane potentials in the electroplates of the electric eel. J Physiol. 1953 Feb 27;119(2-3):315–351. doi: 10.1113/jphysiol.1953.sp004849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kelley D. B. Neuroeffectors for vocalization in Xenopus laevis: hormonal regulation of sexual dimorphism. J Neurobiol. 1986 May;17(3):231–248. doi: 10.1002/neu.480170307. [DOI] [PubMed] [Google Scholar]
  10. Konishi M. Birdsong: from behavior to neuron. Annu Rev Neurosci. 1985;8:125–170. doi: 10.1146/annurev.ne.08.030185.001013. [DOI] [PubMed] [Google Scholar]
  11. Moody W. J., Lansman J. B. Developmental regulation of Ca2+ and K+ currents during hormone-induced maturation of starfish oocytes. Proc Natl Acad Sci U S A. 1983 May;80(10):3096–3100. doi: 10.1073/pnas.80.10.3096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pottinger T. G., Pickering A. D. The effects of 11-ketotestosterone and testosterone on the skin structure of brown trout, Salmo trutta L. Gen Comp Endocrinol. 1985 Sep;59(3):335–342. doi: 10.1016/0016-6480(85)90389-2. [DOI] [PubMed] [Google Scholar]
  14. SZABO T. Structure intime de l'organe electrique de trois mormyrides. Z Zellforsch Mikrosk Anat. 1958;49(1):33–45. [PubMed] [Google Scholar]
  15. Sahley C. L., Barry S. R., Gelperin A. Dietary choline augments associative memory function in Limax maximus. J Neurobiol. 1986 Mar;17(2):113–120. doi: 10.1002/neu.480170206. [DOI] [PubMed] [Google Scholar]
  16. Vyskocil F., Gutmann E. Electrophysiological and contractile properties of the levator ani muscle after castration and testosterone administration. Pflugers Arch. 1977 Mar 11;368(1-2):105–109. doi: 10.1007/BF01063461. [DOI] [PubMed] [Google Scholar]
  17. Wilson J. D., George F. W., Griffin J. E. The hormonal control of sexual development. Science. 1981 Mar 20;211(4488):1278–1284. doi: 10.1126/science.7010602. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES