Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1964 Nov;52(5):1207–1213. doi: 10.1073/pnas.52.5.1207

THE UTILIZATION OF GLUCOSE 6-PHOSPHATE BY GLUCOKINASELESS AND WILD-TYPE STRAINS OF ESCHERICHIA COLI*

D G Fraenkel 1, Françoise Falcoz-Kelly 1,, B L Horecker 1
PMCID: PMC300424  PMID: 14231443

Full text

PDF
1207

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASENSIO C., AVIGAD G., HORECKER B. L. PREFERENTIAL GALACTOSE UTILIZATION IN A MUTANT STRAIN OF E. COLI. Arch Biochem Biophys. 1963 Dec;103:299–309. doi: 10.1016/0003-9861(63)90419-3. [DOI] [PubMed] [Google Scholar]
  2. ASENSIO C., SOLS A. Utilization and phosphorylation of sugars by Escherichia coli. Rev Esp Fisiol. 1958 Dec;14(4):269–275. [PubMed] [Google Scholar]
  3. BALIS M. E., LARK C. T., LUZZATI D. Nucleotide utilization by Escherichia coli. J Biol Chem. 1955 Feb;212(2):641–645. [PubMed] [Google Scholar]
  4. Berenblum I., Chain E. An improved method for the colorimetric determination of phosphate. Biochem J. 1938 Feb;32(2):295–298. doi: 10.1042/bj0320295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bolton E. BIOSYNTHESIS OF NUCLEIC ACID IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1954 Aug;40(8):764–772. doi: 10.1073/pnas.40.8.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. COHEN S. S. Gluconokinase and the oxidative path of glucose-6-phosphate utilization. J Biol Chem. 1951 Apr;189(2):617–628. [PubMed] [Google Scholar]
  7. FRAENKEL D. G., HORECKER B. L. PATHWAYS OF D-GLUCOSE METABOLISM IN SALMONELLA TYPHINMURIUM. A STUDY OF A MUTANT LACKING PHOSPHOGLUCOSE ISOMERASE. J Biol Chem. 1964 Sep;239:2765–2771. [PubMed] [Google Scholar]
  8. FRAENKEL D., OSBORN M. J., HORECKER B. L., SMITH S. M. Metabolism and cell wall structure of a mutant of Salmonella typhimurium deficient in phosphoglucose isomerase. Biochem Biophys Res Commun. 1963 Jun 20;11:423–428. doi: 10.1016/0006-291x(63)90086-x. [DOI] [PubMed] [Google Scholar]
  9. FUJIMOTO A., SMITH R. A. Metabolism of phosphoramidates. II. Further studies on the Escherichia coli phosphoramidate phosphoryl transfer enzyme. Biochim Biophys Acta. 1962 Jan 29;56:501–511. doi: 10.1016/0006-3002(62)90602-9. [DOI] [PubMed] [Google Scholar]
  10. HAGIHIRA H., WILSON T. H., LIN E. C. STUDIES ON THE GLUCOSE-TRANSPORT SYSTEM IN ESCHERICHIA COLI WITH ALPHA-METHYLGLUCOSIDE AS SUBSTRATE. Biochim Biophys Acta. 1963 Nov 15;78:505–515. doi: 10.1016/0006-3002(63)90912-0. [DOI] [PubMed] [Google Scholar]
  11. HAYASHI S., KOCH J. P., LIN E. C. ACTIVE TRANSPORT OF L-ALPHA-GLYCEROPHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1964 Sep;239:3098–3105. [PubMed] [Google Scholar]
  12. LEDERBERG J. The beta-d-galactosidase of Escherichia coli, strain K-12. J Bacteriol. 1950 Oct;60(4):381–392. doi: 10.1128/jb.60.4.381-392.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LICHTENSTEIN J., BARNER H. D., COHEN S. S. The metabolism of exogenously supplied nucleotides by Escherichia coli. J Biol Chem. 1960 Feb;235:457–465. [PubMed] [Google Scholar]
  14. LIN E. C., KOCH J. P., CHUSED T. M., JORGENSEN S. E. Utilization of L-alpha-glycerophosphate by Escherichia coli without hydrolysis. Proc Natl Acad Sci U S A. 1962 Dec 15;48:2145–2150. doi: 10.1073/pnas.48.12.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOVELESS A., HOWARTH S. Mutation of bacteria at high levels of survival by ethyl methane sulphonate. Nature. 1959 Dec 5;184:1780–1782. doi: 10.1038/1841780a0. [DOI] [PubMed] [Google Scholar]
  16. MALAMY M., HORECKER B. L. The localization of alkaline phosphatase in E. coli K12. Biochem Biophys Res Commun. 1961 Jun 2;5:104–108. doi: 10.1016/0006-291x(61)90020-1. [DOI] [PubMed] [Google Scholar]
  17. MARKHAM R., SMITH J. D. The structure of ribonucleic acids. II. The smaller products of ribonuclease digestion. Biochem J. 1952 Dec;52(4):558–565. doi: 10.1042/bj0520558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ROBERTS I. Z., WOLFFE E. L. Utilization of labeled fructose-6-phosphate and fructose-1,6-diphosphate by Escherichia coli. Arch Biochem Biophys. 1951 Aug;33(1):165–166. doi: 10.1016/0003-9861(51)90090-2. [DOI] [PubMed] [Google Scholar]
  19. SISTROM W. R. On the physical state of the intracellularly accumulates substrates of beta-galactoside-permease in Escherichia coli. Biochim Biophys Acta. 1958 Sep;29(3):579–587. doi: 10.1016/0006-3002(58)90015-5. [DOI] [PubMed] [Google Scholar]
  20. SOLS A., DE LA FUENTE G. Glucosa oxidasa en análisis. Rev Esp Fisiol. 1957 Dec;13(4):231–245. [PubMed] [Google Scholar]
  21. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES