Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 23;66(Pt 7):m832. doi: 10.1107/S1600536810023457

Poly[μ6-pyridine-2,4-dicarboxyl­ato-barium]

Qi Shuai a,*, Xiao-Nong Zhao a, Li Zhao b, Fan Hu c
PMCID: PMC3006690  PMID: 21587745

Abstract

In the title complex, [Ba(C7H3NO4)]n, the coordination geometry around the BaII ion can be described as a distorted bicapped trigonal-prismatic BaNO7 arrangement. The pyridine-2,4-dicarb­oxy­lic acid ligands exhibit a new coordination mode. Adjacent metal centers are linked by the O atoms of the pyridine-2,4-dicarb­oxy­lic acid ligands, and then form a three-dimensional supra­molecular polymeric framework.

Related literature

For related structures, see: Frisch & Cahill (2006); Huang et al. (2007); Li et al. (2008); Liang et al. (2002); Noro et al. (2002); Soleimannejad et al. (2009); Zhang (2005).graphic file with name e-66-0m832-scheme1.jpg

Experimental

Crystal data

  • [Ba(C7H3NO4)]

  • M r = 302.44

  • Monoclinic, Inline graphic

  • a = 11.7570 (11) Å

  • b = 7.2121 (7) Å

  • c = 17.4547 (16) Å

  • β = 93.471 (1)°

  • V = 1477.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.35 mm−1

  • T = 296 K

  • 0.37 × 0.34 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.325, T max = 0.783

  • 4192 measured reflections

  • 1662 independent reflections

  • 1547 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.048

  • S = 1.03

  • 1662 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023457/pb2031sup1.cif

e-66-0m832-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023457/pb2031Isup2.hkl

e-66-0m832-Isup2.hkl (82KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Scientific Research Foundation of Northwest A&F University (grant No. Z111020828).

supplementary crystallographic information

Comment

Complex of SrII ion with pyridine-2,4-dicarboxylic acid, [Sr(C7H3NO4)(H2O)2]n, has been previously studied (Soleimannejad et al., 2009), which is a two-dimensional polymer.

Here we report a complex (I) assembled by alkaline earth metal BaII ion with pyridine-2,4-dicarboxylic acid ligand. The formula for the complex is [Ba(C7H3NO4)]n, X-ray crystal analyse reveals that the pyridine-2,4-dicarboxylic acid ligands in the complex are completely deprotonated, which is the same with the complex of [Sr(C7H3NO4)(H2O)2]n.

In the title complex, the asymmetric unit consists of one BaII ion and one pyridine-2,4-dicarboxylate. The coordination geometry around BaII ion (Fig. 1) could be described as a distorted bicapped trigonal prism arrangement with coordination number of 8, where N1, O2B and O4D form the top plane of the trigonal prism, and the bottom plane is completed by O3A, O4E, and O1C, while O1 and O3E capped two quadrilateral faces formed by N1, O3A, O1C, O4D and O2B, O4E, O1C, O4D, respectively. All the coordinated atoms in the title complex are oxygen atoms and nitrogen atoms of pyridine-2,4-dicarboxylic acid ligands, which is different from the complex of [Sr(C7H3NO4)(H2O)2]n, oxygen atoms of water molecules also take part in the coordination with metal centers. The bond length of Ba—Ocarboxylate bonds range from 2.706 (2) to 2.8941 (19) Å, which compare well with the mean value determined from the CSD [2.798 (7) Å for Ba—Ocarboxylate bond](Table 1). The coordination mode (Fig. 2) of pyridine-2,4-dicarboxylic acid ligands can be classified as µ6-(κ8N, O1: O1: O2: O3: O3: O4: O4), that is, two 4-position carboxylate oxygen atoms (O3 and O4) coordinate to three BaII ions, one of the 2-position carboxylate oxygen atoms (O1) coordinates to two BaII ions, at the same time, this oxygen atom chelate a BaII ion with the pyridyl nitrogen (N1). The other 2-position oxygen atom (O2) coordinates to one BaII ion. This coordination mode is not observed in previous reports (Soleimannejad et al., 2009; Huang et al., 2007; Zhang, 2005; Liang et al., 2002; Li et al., 2008; Frisch et al., 2006; Noro et al., 2002). The adjacent metal centers are linked by the oxygen and nitrogen atoms of pyridine-2,4-dicarboxylic acid ligands, and then form a three-dimensional supramolecular polymeric framework (Fig. 3), while in the complex of Sr(C7H3NO4)(H2O)2]n (Soleimannejad et al., 2009), the three-dimensional structure is constructed by non-covalent interactions consisting of O—H···O hydrogen bonds and π-π stacking interactions.

Experimental

A mixture of barium chloride dihydrate (0.0244 g, 0.1 mmol), sodium hydroxide (0.0080 g, 0.2 mmol), pyridine-2,4-dicarboxylic acid (0.0167 g, 0.1 mmol), and H2O (3 mL) was placed in a Parr Teflon-lined stainless stell vessel (25 ml), and then the vessel was sealed and heated at 443.15 K for 4 days. Then the vessel was cooled to 373.15 K at a rate of 5 K h-1 and slowly cooled to room temperature. Colorless, rectangular single crystals suitable for X-ray diffraction were obtained.

Figures

Fig. 1.

Fig. 1.

Coordination environment of BaII ion in the title complex. Non-hydrogen atoms are shown as 30% probability ellipsoids. Hydrogen atoms are omitted for clarity. Symmetry codes: (A) -x + 1, -y, -z + 1; (B) x - 1/2, y + 1/2, z; (C) -x + 1, y, -z + 1/2; (D) -x + 1, -y + 1, -z + 1; (E) x - 1/2, -y + 1/2, z - 1/2.

Fig. 2.

Fig. 2.

Coordination mode of pyridine-2,4-dicarboxylic acid ligands in the title complex. Non-hydrogen atoms are shown as 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Fig. 3.

Fig. 3.

View of three-dimensional framework along b axis in the title complex.

Crystal data

[Ba(C7H3NO4)] F(000) = 1120
Mr = 302.44 Dx = 2.720 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2902 reflections
a = 11.7570 (11) Å θ = 2.3–27.5°
b = 7.2121 (7) Å µ = 5.35 mm1
c = 17.4547 (16) Å T = 296 K
β = 93.471 (1)° Block, colorless
V = 1477.3 (2) Å3 0.37 × 0.34 × 0.07 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 1662 independent reflections
Radiation source: fine-focus sealed tube 1547 reflections with I > 2σ(I)
graphite Rint = 0.018
phi and ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −15→13
Tmin = 0.325, Tmax = 0.783 k = −9→9
4192 measured reflections l = −16→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018 H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0287P)2 + 1.379P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.002
1662 reflections Δρmax = 0.70 e Å3
119 parameters Δρmin = −0.45 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00237 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ba1 0.332689 (13) 0.35356 (2) 0.305017 (8) 0.01561 (9)
N1 0.44887 (19) 0.2899 (3) 0.45739 (13) 0.0175 (5)
O1 0.55983 (18) 0.2658 (3) 0.32482 (11) 0.0282 (5)
O2 0.68945 (17) 0.0756 (3) 0.38112 (12) 0.0260 (4)
O3 0.69395 (18) 0.0151 (3) 0.67349 (12) 0.0255 (4)
O4 0.63043 (17) 0.2757 (3) 0.72435 (11) 0.0214 (4)
C3 0.5531 (2) 0.2109 (4) 0.45821 (15) 0.0151 (5)
C4 0.6129 (2) 0.1626 (3) 0.52576 (17) 0.0179 (6)
H4 0.6828 0.1027 0.5245 0.021*
C5 0.5685 (2) 0.2036 (4) 0.59553 (15) 0.0162 (5)
C6 0.4620 (2) 0.2887 (4) 0.59501 (16) 0.0188 (5)
H6 0.4299 0.3208 0.6406 0.023*
C7 0.4053 (2) 0.3242 (4) 0.52447 (17) 0.0196 (6)
H7 0.3326 0.3749 0.5241 0.023*
C1 0.6053 (2) 0.1797 (4) 0.38175 (17) 0.0190 (6)
C2 0.6353 (2) 0.1607 (3) 0.67076 (16) 0.0169 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ba1 0.01808 (12) 0.01548 (11) 0.01308 (12) 0.00230 (5) −0.00070 (7) −0.00040 (5)
N1 0.0179 (11) 0.0184 (11) 0.0159 (11) 0.0011 (9) −0.0007 (9) −0.0004 (9)
O1 0.0256 (11) 0.0458 (13) 0.0133 (10) 0.0028 (10) 0.0015 (8) 0.0056 (9)
O2 0.0215 (10) 0.0315 (11) 0.0258 (11) 0.0039 (9) 0.0080 (8) −0.0055 (9)
O3 0.0332 (11) 0.0187 (10) 0.0231 (11) 0.0011 (9) −0.0093 (9) 0.0031 (8)
O4 0.0263 (10) 0.0228 (10) 0.0148 (10) −0.0029 (8) −0.0006 (8) −0.0009 (8)
C3 0.0169 (12) 0.0139 (12) 0.0146 (13) −0.0013 (10) 0.0007 (10) 0.0002 (10)
C4 0.0175 (13) 0.0161 (12) 0.0200 (14) 0.0007 (9) 0.0012 (11) −0.0003 (10)
C5 0.0187 (13) 0.0135 (11) 0.0160 (13) −0.0029 (10) −0.0014 (10) 0.0026 (10)
C6 0.0234 (14) 0.0173 (12) 0.0162 (13) −0.0002 (11) 0.0037 (10) −0.0026 (11)
C7 0.0156 (13) 0.0212 (13) 0.0220 (15) 0.0030 (10) 0.0019 (11) −0.0008 (11)
C1 0.0163 (13) 0.0226 (13) 0.0183 (14) −0.0041 (11) 0.0027 (10) −0.0019 (11)
C2 0.0204 (14) 0.0165 (13) 0.0137 (13) −0.0066 (10) −0.0003 (11) 0.0039 (10)

Geometric parameters (Å, °)

Ba1—O3i 2.706 (2) O3—Ba1i 2.706 (2)
Ba1—O2ii 2.727 (2) O3—Ba1vii 2.8941 (19)
Ba1—O1iii 2.735 (2) O4—C2 1.254 (3)
Ba1—O1 2.746 (2) O4—Ba1iv 2.762 (2)
Ba1—O4iv 2.762 (2) O4—Ba1vii 2.8463 (19)
Ba1—O4v 2.8463 (19) C3—C4 1.380 (4)
Ba1—O3v 2.8941 (19) C3—C1 1.519 (4)
Ba1—N1 2.951 (2) C4—C5 1.385 (4)
Ba1—C2v 3.199 (3) C4—H4 0.9300
N1—C7 1.329 (4) C5—C6 1.394 (4)
N1—C3 1.351 (3) C5—C2 1.520 (4)
O1—C1 1.263 (3) C6—C7 1.388 (4)
O1—Ba1iii 2.735 (2) C6—H6 0.9300
O2—C1 1.242 (3) C7—H7 0.9300
O2—Ba1vi 2.727 (2) C2—Ba1vii 3.199 (3)
O3—C2 1.256 (3)
O3i—Ba1—O2ii 115.43 (7) N1—Ba1—Ba1ix 132.65 (4)
O3i—Ba1—O1iii 87.17 (7) C2v—Ba1—Ba1ix 55.55 (4)
O2ii—Ba1—O1iii 150.40 (7) Ba1viii—Ba1—Ba1ix 107.398 (9)
O3i—Ba1—O1 82.87 (7) O3i—Ba1—Ba1iii 99.87 (5)
O2ii—Ba1—O1 134.32 (6) O2ii—Ba1—Ba1iii 142.45 (5)
O1iii—Ba1—O1 63.66 (7) O1iii—Ba1—Ba1iii 35.23 (4)
O3i—Ba1—O4iv 176.22 (6) O1—Ba1—Ba1iii 35.07 (4)
O2ii—Ba1—O4iv 68.31 (6) O4iv—Ba1—Ba1iii 76.62 (4)
O1iii—Ba1—O4iv 89.12 (7) O4v—Ba1—Ba1iii 121.12 (4)
O1—Ba1—O4iv 94.82 (7) O3v—Ba1—Ba1iii 97.31 (5)
O3i—Ba1—O4v 69.30 (6) N1—Ba1—Ba1iii 90.91 (5)
O2ii—Ba1—O4v 84.91 (6) C2v—Ba1—Ba1iii 107.64 (5)
O1iii—Ba1—O4v 85.89 (6) Ba1viii—Ba1—Ba1iii 100.719 (6)
O1—Ba1—O4v 139.80 (6) Ba1ix—Ba1—Ba1iii 100.719 (6)
O4iv—Ba1—O4v 111.18 (5) C7—N1—C3 117.8 (2)
O3i—Ba1—O3v 111.55 (5) C7—N1—Ba1 125.67 (17)
O2ii—Ba1—O3v 81.90 (6) C3—N1—Ba1 116.43 (17)
O1iii—Ba1—O3v 71.64 (6) C1—O1—Ba1iii 124.82 (18)
O1—Ba1—O3v 132.26 (6) C1—O1—Ba1 125.07 (18)
O4iv—Ba1—O3v 67.86 (5) Ba1iii—O1—Ba1 109.69 (7)
O4v—Ba1—O3v 45.65 (6) C1—O2—Ba1vi 151.01 (19)
O3i—Ba1—N1 76.91 (6) C2—O3—Ba1i 139.38 (19)
O2ii—Ba1—N1 85.30 (6) C2—O3—Ba1vii 92.19 (16)
O1iii—Ba1—N1 119.93 (6) Ba1i—O3—Ba1vii 106.03 (6)
O1—Ba1—N1 57.12 (6) C2—O4—Ba1iv 119.16 (17)
O4iv—Ba1—N1 104.39 (6) C2—O4—Ba1vii 94.48 (17)
O4v—Ba1—N1 136.23 (6) Ba1iv—O4—Ba1vii 105.85 (6)
O3v—Ba1—N1 166.82 (6) N1—C3—C4 122.0 (3)
O3i—Ba1—C2v 89.14 (6) N1—C3—C1 117.9 (2)
O2ii—Ba1—C2v 86.19 (6) C4—C3—C1 120.1 (2)
O1iii—Ba1—C2v 74.73 (7) C3—C4—C5 119.8 (3)
O1—Ba1—C2v 137.89 (7) C3—C4—H4 120.1
O4iv—Ba1—C2v 90.59 (6) C5—C4—H4 120.1
O4v—Ba1—C2v 23.01 (7) C4—C5—C6 118.3 (2)
O3v—Ba1—C2v 23.11 (6) C4—C5—C2 120.9 (2)
N1—Ba1—C2v 158.59 (7) C6—C5—C2 120.8 (3)
O3i—Ba1—Ba1viii 38.44 (4) C7—C6—C5 118.0 (3)
O2ii—Ba1—Ba1viii 114.66 (4) C7—C6—H6 121.0
O1iii—Ba1—Ba1viii 70.63 (5) C5—C6—H6 121.0
O1—Ba1—Ba1viii 105.21 (5) N1—C7—C6 123.9 (3)
O4iv—Ba1—Ba1viii 140.32 (4) N1—C7—H7 118.1
O4v—Ba1—Ba1viii 36.42 (4) C6—C7—H7 118.1
O3v—Ba1—Ba1viii 73.38 (4) O2—C1—O1 126.1 (3)
N1—Ba1—Ba1viii 115.27 (5) O2—C1—C3 117.5 (3)
C2v—Ba1—Ba1viii 51.86 (4) O1—C1—C3 116.4 (2)
O3i—Ba1—Ba1ix 143.17 (4) O4—C2—O3 125.1 (3)
O2ii—Ba1—Ba1ix 58.04 (5) O4—C2—C5 117.7 (2)
O1iii—Ba1—Ba1ix 92.37 (5) O3—C2—C5 117.2 (2)
O1—Ba1—Ba1ix 129.33 (5) O4—C2—Ba1vii 62.52 (14)
O4iv—Ba1—Ba1ix 37.73 (4) O3—C2—Ba1vii 64.71 (14)
O4v—Ba1—Ba1ix 73.94 (4) C5—C2—Ba1vii 162.39 (18)
O3v—Ba1—Ba1ix 35.53 (4)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1/2, y+1/2, z; (iii) −x+1, y, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) x−1/2, −y+1/2, z−1/2; (vi) x+1/2, y−1/2, z; (vii) x+1/2, −y+1/2, z+1/2; (viii) −x+1/2, y−1/2, −z+1/2; (ix) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2031).

References

  1. Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Frisch, M. & Cahill, C. L. (2006). Dalton Trans. pp. 4679–4690. [DOI] [PubMed]
  3. Huang, Y. G., Zhou, Y., Yuan, D. Q., Wu, B. L., Jiang, F. L. & Hong, M. C. (2007). J. Mol. Struct.830, 85–93.
  4. Li, Z. G., Wang, G. H., Jia, H. Q., Hu, N. H. & Xu, J. W. (2008). CrystEngComm, 10, 173–176.
  5. Liang, Y. C., Cao Hong, M. C., Sun, D. F., Zhao, Y. J., Weng, J. B. & Wang, R. H. (2002). Inorg. Chem. Commun.5, 366–368.
  6. Noro, S., Kitagawa, S., Yamashita, M. & Wada, T. (2002). CrystEngComm, 4, 162–164.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Soleimannejad, J., Mohammadzadeh, Y., Aghabozorg, H. & Derikvand, Z. (2009). Acta Cryst. E65, m922. [DOI] [PMC free article] [PubMed]
  9. Zhang, X. M. (2005). Inorg. Chim. Acta, 358, 1865–1872.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023457/pb2031sup1.cif

e-66-0m832-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023457/pb2031Isup2.hkl

e-66-0m832-Isup2.hkl (82KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES