Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 16;66(Pt 7):i51–i52. doi: 10.1107/S1600536810021768

The quinter­nary thio­phosphate Cs0.5Ag0.5Nb2PS10

Sojeong Park a, Hoseop Yun a,*
PMCID: PMC3006697  PMID: 21587667

Abstract

The quinter­nary thio­phosphate Cs0.5Ag0.5Nb2PS10, cesium silver tris­(disulfido)[tetra­thio­phosphato(V)]diniobate(IV), has been prepared from the elements using a CsCl flux. The crystal structure is made up of 1[Nb2PS10] chains expanding along [010]. These chains are built up from bicapped trigonal-prismatic [Nb2S12] units and tetra­hedral [PS4] groups and are linked through a linear S—Ag—S bridge, forming a two-dimensional layer. These layers then stack on top of each other, completing the three-dimensional structure with an undulating van der Waals gap. The disordered Cs+ ions reside on sites with half-occupation in the voids of this arrangement. Short [2.8843 (5) Å] and long [3.7316 (4) Å] Nb—Nb distances alternate along the chains, and anionic S2 2− and S2− species are observed. The charge balance of the com­pound can be represented by the formula [Cs+]0.5[Ag+]0.5[Nb4+]2[PS4 3−][S2 2−]3.

Related literature

For Nb2PS10-related quaternary thio­phosphates, see: Do & Yun (1996) for KNb2PS10, Kim & Yun (2002) for RbNb2PS10, Kwak et al. (2007) for CsNb2PS10, Bang et al. (2008) for TlNb2PS10, and Do & Yun (2009) for Ag0.88Nb2PS10. For quintenary thio­phosphates, see: Kwak & Yun (2008) for K0.34Cu0.5Nb2PS10, Dong et al. (2005a ) for K0.5Ag0.5Nb2PS10, and Dong et al. (2005b ) for Rb0.38Ag0.5Nb2PS10. PLATON (Spek, 2009) was used for structure validation. For typical Nb—P and P—S bond length, see: Brec et al. (1983), and for typical Nb4+–Nb4+ bond lengths, see: Angenault et al. (2000). For general background, see: Lee et al. (1988).

Experimental

Crystal data

  • Cs0.5Ag0.5Nb2PS10

  • M r = 657.78

  • Monoclinic, Inline graphic

  • a = 7.3594 (3) Å

  • b = 12.8534 (4) Å

  • c = 13.7788 (6) Å

  • β = 91.0886 (12)°

  • V = 1303.15 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.54 mm−1

  • T = 290 K

  • 0.30 × 0.06 × 0.04 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.602, T max = 1.000

  • 12389 measured reflections

  • 2991 independent reflections

  • 2430 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.075

  • S = 1.08

  • 2991 reflections

  • 133 parameters

  • Δρmax = 1.18 e Å−3

  • Δρmin = −1.27 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021768/wm2357sup1.cif

e-66-00i51-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021768/wm2357Isup2.hkl

e-66-00i51-Isup2.hkl (143.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ag—S1 2.4625 (13)
Nb1—S4i 2.4953 (13)
Nb1—S7i 2.4958 (12)
Nb1—S8i 2.5055 (13)
Nb1—S10i 2.5231 (13)
Nb1—S9 2.5658 (12)
Nb1—S2 2.5895 (12)
Nb1—S5 2.5993 (13)
Nb1—S6 2.6103 (12)
Nb2—S10 2.4910 (13)
Nb2—S7 2.4932 (13)
Nb2—S4 2.4985 (12)
Nb2—S8 2.5075 (12)
Nb2—S5 2.5643 (13)
Nb2—S9 2.5670 (12)
Nb2—S3 2.5920 (12)
Nb2—S6 2.6250 (12)
P—S1 1.9962 (18)
P—S3 2.0391 (17)
P—S2 2.0527 (17)
P—S6 2.0851 (17)
S1—Ag—S1ii 180

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2009–0094047). Use was made of the X-ray facilities supported by Ajou University.

supplementary crystallographic information

Comment

During an effort to expand representatives of group 5 transition metal thiophosphates by substituting various monovalent cations, we were able to prepare a new derivative in this system. Here we report the synthesis and characterization of the new layered quinternary thiophosphate, Cs0.5Ag0.5Nb2PS10.

The title compound is isostructural with the previously reported K0.34Cu0.5Nb2PS10 (Kwak & Yun, 2008). The 1[Nb2PS10] chains found in this structure are composed of the typical biprismatic [Nb2S12] and tetrahedral [PS4] units. The Nb atoms are surrounded by 8 S atoms in a bicapped trigonal-prismatic fashion. Two prisms are sharing a rectangular face to form the [Nb2S12] unit. These units are bound through the S—S prism edges and through one of the capping sulfur atoms to make 1[Nb2S9] chains. One of the S atoms at the prism edge and two other capping S atoms are bound to the P atom to which an additional S atom (S1) is attached to complete the 1[Nb2PS10] chains. These anionic chains propagate parallel to [010] and are linked through the linear S—Ag—S bridge to form a two-dimensional layer along (201). These layers then stack on top of each other to complete the three-dimensional structure with an undulating van der Waals gap. The disordered Cs+ cations reside in the voids of this arrangement.

The Nb—S and P—S distances are in agreement with those found in other related phases (Brec et al., 1983). Along the chain, The Nb(1)···Nb(2) interactions alternate in the sequence of one short (2.8843 (5) Å) and one long (3.7316 (4) Å) distance. The short distance is close to that of the typical Nb4+—Nb4+ bond (Angenault et al., 2000), and the long Nb···Nb distance shows that there is no significant intermetallic bonding interaction. Such an arrangement is consistent with the high electric resistivity of the crystal along the needle axis (b axis).

The coordination around the Ag atom (1 symmetry) can be described as a [2 + 4] interaction. Four S atoms are bound to the Ag atoms in the plane (Ag—S6, 3.139 (3) Å, Ag—S9, 3.232 (3) Å), whereas two trans S atoms are coordinated to the Ag atom at short distances of Ag—S1 = 2.4625 (13) Å. The large ADPs of Ag could be explained by the second-order Jahn-Teller coupling between the filled Ag eg and the empty s orbitals (Lee et al., 1988), which is a common trend of d10 elements. The charge balance of the compound can be represented by the formula [Cs+]0.5[Ag+]0.5[Nb4+]2[PS43-][S22-]3.

For Nb2PS10-related quaternary thiophosphates, see: Do & Yun (1996) for KNb2PS10, Kim & Yun (2002) for RbNb2PS10, Kwak et al. (2007) for CsNb2PS10, Bang et al. (2008) for TlNb2PS10, and Do & Yun (2009) for Ag0.88Nb2PS10; for quinternary thiophosphates, see: Kwak & Yun (2008) for K0.34Cu0.5Nb2PS10, Dong et al. (2005a) for K0.5Ag0.5Nb2PS10, and Dong et al. (2005b) for Rb0.38Ag0.5Nb2PS10.

Experimental

Cs0.5Ag0.5Nb2PS10 was prepared by the reaction of elemental powders, using the reactive halide-flux technique. Ag powder (CERAC 99.999%), Nb powder (CERAC 99.8%), P powder (CERAC 99.5%) and S powder (Aldrich 99.999%) were mixed in a fused silica tube in a molar ratio of Ag:Nb:P:S=1:2:1:10 and then CsCl was added in a weight ratio of AgNb2PS10:CsCl=1:3. The tube was evacuated to 0.133 Pa, sealed and heated gradually (50 K/h) to 973 K, where it was kept for 72 h. The tube was cooled to room temperature at the rate of 4 K/h. The excess halide was removed with distilled water and dark red needle-shaped crystals were obtained. The crystals are stable in air and water. A qualitative X-ray fluorescence analysis of the needles indicated the presence of Cs, Ag, Nb, P, and S. The composition of the compound was determined by single-crystal X-ray diffraction.

Refinement

Refinement went smoothly but the anisotropic displacement parameters (ADPs) of the Cs (Wyckoff position 4e) and Ag (2a) atoms were large compared with those of the other atoms. Because non-stoichiometry in these phases is sometimes observed and the distance between Cs atoms is too short if full occupancy is assumed, the occupancies of each metal atom were checked by refining the site occupation factors (SOFs) while those of the other atoms were fixed. With the non-stoichiometric model, the SOF of the Cs site was reduced significantly from 1 to 0.49 and the residuals improved also. As no evidence was found for ordering of the Cs site at Wyckoff position 2c, a statistically disordered structure was finally modelled. The final difference Fourier map showed that the highest residual electron density (1.18 e/Å3) is 0.94 Å from the Nb2 site and the deepest hole (-1.27 e/Å3) is 0.84 Å from the Nb2 site. No additional symmetry, as tested by PLATON (Spek, 2009), has been detected in this structure.

Figures

Fig. 1.

Fig. 1.

A view of the Cs0.5Ag0.5Nb2PS10 structure. Anisotropic displacement ellipsoids are drawn at the 90% probability level. Symmetry codes are given in Table 1.

Crystal data

Cs0.5Ag0.5Nb2PS10 F(000) = 1232
Mr = 657.78 Dx = 3.353 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8832 reflections
a = 7.3594 (3) Å θ = 3.2–27.5°
b = 12.8534 (4) Å µ = 5.54 mm1
c = 13.7788 (6) Å T = 290 K
β = 91.0886 (12)° Needle, dark brown
V = 1303.15 (8) Å3 0.30 × 0.06 × 0.04 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 2430 reflections with I > 2σ(I)
graphite Rint = 0.049
ω scans θmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −9→9
Tmin = 0.602, Tmax = 1.000 k = −16→14
12389 measured reflections l = −17→17
2991 independent reflections

Refinement

Refinement on F2 133 parameters
Least-squares matrix: full 0 restraints
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0248P)2 + 3.4157P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 1.18 e Å3
2991 reflections Δρmin = −1.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cs −0.0009 (4) 0.02093 (15) 0.48715 (19) 0.0512 (5) 0.5
Ag 0 0 0 0.0539 (2)
Nb1 0.42651 (5) 0.03565 (3) 0.24995 (3) 0.01333 (11)
Nb2 0.43445 (5) 0.32590 (3) 0.25353 (3) 0.01280 (11)
P 0.11427 (16) 0.18631 (9) 0.14370 (10) 0.0170 (3)
S1 −0.03805 (19) 0.18878 (10) 0.02229 (11) 0.0292 (3)
S2 0.07865 (16) 0.05281 (9) 0.22287 (10) 0.0210 (3)
S3 0.08568 (16) 0.31790 (9) 0.22464 (10) 0.0207 (3)
S4 0.33249 (16) 0.47121 (9) 0.35994 (9) 0.0187 (3)
S5 0.38477 (17) 0.18131 (9) 0.37848 (9) 0.0190 (3)
S6 0.39304 (16) 0.18214 (8) 0.11963 (9) 0.0161 (2)
S7 0.42828 (17) 0.44324 (9) 0.10942 (9) 0.0194 (3)
S8 0.58572 (16) 0.41695 (9) 0.39426 (9) 0.0184 (3)
S9 0.63765 (16) 0.17797 (9) 0.31795 (9) 0.0189 (3)
S10 0.67972 (16) 0.38737 (9) 0.14538 (9) 0.0204 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cs 0.0270 (3) 0.0779 (16) 0.0489 (13) −0.0003 (11) 0.0060 (7) −0.0283 (10)
Ag 0.0518 (4) 0.0298 (3) 0.0800 (6) −0.0028 (3) 0.0017 (4) −0.0287 (4)
Nb1 0.0150 (2) 0.00814 (18) 0.0168 (2) 0.00081 (16) −0.00185 (16) 0.00082 (16)
Nb2 0.0145 (2) 0.00802 (19) 0.0158 (2) −0.00071 (16) −0.00210 (16) −0.00048 (16)
P 0.0157 (5) 0.0115 (5) 0.0235 (7) 0.0014 (5) −0.0057 (5) −0.0025 (5)
S1 0.0325 (7) 0.0228 (6) 0.0316 (8) 0.0023 (6) −0.0168 (6) −0.0038 (6)
S2 0.0181 (5) 0.0140 (5) 0.0310 (7) −0.0014 (5) −0.0023 (5) 0.0030 (5)
S3 0.0168 (5) 0.0146 (5) 0.0305 (7) 0.0023 (5) −0.0034 (5) −0.0073 (5)
S4 0.0190 (5) 0.0146 (5) 0.0225 (7) −0.0007 (5) 0.0017 (5) −0.0031 (5)
S5 0.0256 (6) 0.0126 (5) 0.0189 (6) 0.0001 (5) 0.0008 (5) 0.0007 (5)
S6 0.0186 (5) 0.0104 (5) 0.0193 (6) 0.0019 (5) −0.0015 (5) −0.0007 (5)
S7 0.0269 (6) 0.0131 (5) 0.0180 (6) −0.0009 (5) −0.0044 (5) 0.0004 (5)
S8 0.0233 (6) 0.0124 (5) 0.0195 (6) −0.0013 (5) −0.0043 (5) 0.0000 (5)
S9 0.0185 (5) 0.0128 (5) 0.0251 (7) −0.0001 (5) −0.0054 (5) 0.0009 (5)
S10 0.0217 (6) 0.0152 (5) 0.0244 (7) −0.0003 (5) 0.0048 (5) −0.0021 (5)

Geometric parameters (Å, °)

Cs—Csi 0.644 (3) Nb2—S8 2.5075 (12)
Cs—S10ii 3.444 (3) Nb2—S5 2.5643 (13)
Cs—S10iii 3.469 (3) Nb2—S9 2.5670 (12)
Cs—S7iv 3.536 (3) Nb2—S3 2.5920 (12)
Cs—S7v 3.581 (3) Nb2—S6 2.6250 (12)
Cs—S2 3.722 (3) Nb2—Nb1viii 2.8843 (5)
Cs—S1v 3.773 (2) P—S1 1.9962 (18)
Cs—S5 3.835 (3) P—S3 2.0391 (17)
Cs—S3v 3.915 (3) P—S2 2.0527 (17)
Cs—S3iv 3.956 (3) P—S6 2.0851 (17)
Cs—S9vi 4.044 (3) S1—Csix 3.773 (2)
Cs—S2i 4.157 (3) S2—Csi 4.157 (3)
Ag—S1 2.4625 (13) S3—Csix 3.915 (3)
Ag—S1vii 2.4625 (13) S3—Csx 3.956 (3)
Nb1—S4iii 2.4953 (13) S4—S8 2.0371 (17)
Nb1—S7iii 2.4958 (12) S4—Nb1viii 2.4953 (13)
Nb1—S8iii 2.5055 (13) S5—S9 2.0542 (18)
Nb1—S10iii 2.5231 (13) S7—S10 2.0372 (17)
Nb1—S9 2.5658 (12) S7—Nb1viii 2.4958 (12)
Nb1—S2 2.5895 (12) S7—Csx 3.536 (3)
Nb1—S5 2.5993 (13) S7—Csix 3.581 (3)
Nb1—S6 2.6103 (12) S8—Nb1viii 2.5055 (13)
Nb1—Nb2iii 2.8843 (5) S9—Csxi 4.044 (3)
Nb2—S10 2.4910 (13) S10—Nb1viii 2.5231 (13)
Nb2—S7 2.4932 (13) S10—Csxii 3.444 (3)
Nb2—S4 2.4985 (12) S10—Csviii 3.469 (3)
Csi—Cs—S10ii 86.8 (5) S9—Nb1—Nb2iii 117.38 (3)
Csi—Cs—S10iii 82.5 (5) S2—Nb1—Nb2iii 115.30 (3)
S10ii—Cs—S10iii 169.32 (5) S5—Nb1—Nb2iii 136.98 (3)
Csi—Cs—S7iv 88.8 (5) S6—Nb1—Nb2iii 133.76 (3)
S10ii—Cs—S7iv 73.85 (7) S10—Nb2—S7 48.25 (4)
S10iii—Cs—S7iv 105.80 (8) S10—Nb2—S4 110.06 (4)
Csi—Cs—S7v 80.9 (5) S7—Nb2—S4 90.81 (4)
S10ii—Cs—S7v 105.35 (8) S10—Nb2—S8 89.91 (4)
S10iii—Cs—S7v 73.00 (7) S7—Nb2—S8 109.55 (4)
S7iv—Cs—S7v 169.64 (5) S4—Nb2—S8 48.02 (4)
Csi—Cs—S2 128.9 (5) S10—Nb2—S5 138.22 (4)
S10ii—Cs—S2 134.71 (8) S7—Nb2—S5 166.52 (4)
S10iii—Cs—S2 54.41 (5) S4—Nb2—S5 95.72 (4)
S7iv—Cs—S2 79.52 (6) S8—Nb2—S5 83.45 (4)
S7v—Cs—S2 107.01 (8) S10—Nb2—S9 91.02 (4)
Csi—Cs—S1v 139.1 (6) S7—Nb2—S9 136.48 (4)
S10ii—Cs—S1v 61.86 (5) S4—Nb2—S9 122.02 (4)
S10iii—Cs—S1v 127.50 (7) S8—Nb2—S9 80.28 (4)
S7iv—Cs—S1v 105.15 (7) S5—Nb2—S9 47.20 (4)
S7v—Cs—S1v 82.99 (6) S10—Nb2—S3 130.35 (5)
S2—Cs—S1v 91.71 (4) S7—Nb2—S3 84.19 (4)
Csi—Cs—S5 131.1 (6) S4—Nb2—S3 79.18 (4)
S10ii—Cs—S5 125.61 (7) S8—Nb2—S3 124.13 (4)
S10iii—Cs—S5 62.86 (5) S5—Nb2—S3 85.47 (4)
S7iv—Cs—S5 131.64 (7) S9—Nb2—S3 126.33 (4)
S7v—Cs—S5 57.45 (5) S10—Nb2—S6 83.03 (4)
S2—Cs—S5 55.08 (4) S7—Nb2—S6 82.29 (4)
S1v—Cs—S5 64.82 (4) S4—Nb2—S6 155.03 (4)
Csi—Cs—S3v 88.9 (5) S8—Nb2—S6 156.36 (4)
S10ii—Cs—S3v 52.55 (5) S5—Nb2—S6 86.88 (4)
S10iii—Cs—S3v 126.89 (9) S9—Nb2—S6 77.33 (4)
S7iv—Cs—S3v 126.40 (9) S3—Nb2—S6 76.27 (4)
S7v—Cs—S3v 53.89 (5) S10—Nb2—Nb1viii 55.41 (3)
S2—Cs—S3v 137.18 (6) S7—Nb2—Nb1viii 54.72 (3)
S1v—Cs—S3v 51.72 (4) S4—Nb2—Nb1viii 54.67 (3)
S5—Cs—S3v 86.11 (6) S8—Nb2—Nb1viii 54.84 (3)
Csi—Cs—S3iv 81.7 (5) S5—Nb2—Nb1viii 138.05 (3)
S10ii—Cs—S3iv 126.35 (9) S9—Nb2—Nb1viii 119.58 (3)
S10iii—Cs—S3iv 52.02 (5) S3—Nb2—Nb1viii 112.65 (3)
S7iv—Cs—S3iv 53.79 (5) S6—Nb2—Nb1viii 133.06 (3)
S7v—Cs—S3iv 123.87 (8) S1—P—S3 112.52 (8)
S2—Cs—S3iv 51.42 (5) S1—P—S2 112.54 (8)
S1v—Cs—S3iv 137.41 (7) S3—P—S2 112.78 (8)
S5—Cs—S3iv 100.03 (7) S1—P—S6 113.93 (9)
S3v—Cs—S3iv 170.63 (4) S3—P—S6 102.73 (7)
Csi—Cs—S9vi 137.7 (6) S2—P—S6 101.48 (7)
S10ii—Cs—S9vi 75.21 (6) P—S1—Ag 91.46 (6)
S10iii—Cs—S9vi 113.01 (7) P—S1—Csix 94.72 (7)
S7iv—Cs—S9vi 49.70 (4) Ag—S1—Csix 161.76 (7)
S7v—Cs—S9vi 140.51 (6) P—S2—Nb1 90.68 (5)
S2—Cs—S9vi 59.66 (4) P—S2—Cs 129.50 (7)
S1v—Cs—S9vi 62.08 (4) Nb1—S2—Cs 91.32 (6)
S5—Cs—S9vi 89.44 (4) P—S2—Csi 136.28 (7)
S3v—Cs—S9vi 108.21 (6) Nb1—S2—Csi 89.76 (5)
S3iv—Cs—S9vi 79.11 (6) P—S3—Nb2 90.27 (5)
Csi—Cs—S2i 44.2 (5) P—S3—Csix 89.92 (6)
S10ii—Cs—S2i 50.32 (4) Nb2—S3—Csix 104.61 (6)
S10iii—Cs—S2i 120.06 (6) P—S3—Csx 99.22 (6)
S7iv—Cs—S2i 99.18 (6) Nb2—S3—Csx 103.24 (6)
S7v—Cs—S2i 73.35 (5) S8—S4—Nb1viii 66.22 (5)
S2—Cs—S2i 173.07 (6) S8—S4—Nb2 66.22 (5)
S1v—Cs—S2i 95.19 (7) Nb1viii—S4—Nb2 70.56 (3)
S5—Cs—S2i 127.91 (8) S9—S5—Nb2 66.47 (5)
S3v—Cs—S2i 48.73 (4) S9—S5—Nb1 65.71 (5)
S3iv—Cs—S2i 122.41 (5) Nb2—S5—Nb1 92.55 (4)
S9vi—Cs—S2i 124.54 (8) S9—S5—Cs 146.11 (7)
S1—Ag—S1vii 180.00 (10) Nb2—S5—Cs 140.15 (6)
S4iii—Nb1—S7iii 90.82 (4) Nb1—S5—Cs 88.67 (5)
S4iii—Nb1—S8iii 48.08 (4) P—S6—Nb1 89.39 (5)
S7iii—Nb1—S8iii 109.54 (4) P—S6—Nb2 88.37 (5)
S4iii—Nb1—S10iii 109.13 (4) Nb1—S6—Nb2 90.92 (4)
S7iii—Nb1—S10iii 47.89 (4) S10—S7—Nb2 65.82 (5)
S8iii—Nb1—S10iii 89.23 (4) S10—S7—Nb1viii 66.76 (5)
S4iii—Nb1—S9 91.47 (4) Nb2—S7—Nb1viii 70.64 (3)
S7iii—Nb1—S9 78.95 (4) S10—S7—Csx 171.29 (7)
S8iii—Nb1—S9 137.40 (4) Nb2—S7—Csx 118.24 (6)
S10iii—Nb1—S9 121.46 (4) Nb1viii—S7—Csx 121.50 (5)
S4iii—Nb1—S2 130.77 (4) S10—S7—Csix 161.56 (7)
S7iii—Nb1—S2 124.06 (4) Nb2—S7—Csix 117.07 (6)
S8iii—Nb1—S2 85.24 (4) Nb1viii—S7—Csix 131.67 (5)
S10iii—Nb1—S2 80.24 (4) S4—S8—Nb1viii 65.70 (5)
S9—Nb1—S2 125.60 (4) S4—S8—Nb2 65.76 (5)
S4iii—Nb1—S5 138.34 (4) Nb1viii—S8—Nb2 70.25 (3)
S7iii—Nb1—S5 82.43 (4) S5—S9—Nb1 67.42 (5)
S8iii—Nb1—S5 167.42 (4) S5—S9—Nb2 66.33 (5)
S10iii—Nb1—S5 96.47 (4) Nb1—S9—Nb2 93.27 (4)
S9—Nb1—S5 46.87 (4) S5—S9—Csxi 111.56 (7)
S2—Nb1—S5 84.69 (4) Nb1—S9—Csxi 104.00 (5)
S4iii—Nb1—S6 83.16 (4) Nb2—S9—Csxi 160.34 (6)
S7iii—Nb1—S6 155.62 (4) S7—S10—Nb2 65.93 (5)
S8iii—Nb1—S6 83.80 (4) S7—S10—Nb1viii 65.35 (5)
S10iii—Nb1—S6 155.76 (4) Nb2—S10—Nb1viii 70.23 (3)
S9—Nb1—S6 77.61 (4) S7—S10—Csxii 110.68 (8)
S2—Nb1—S6 76.07 (4) Nb2—S10—Csxii 176.58 (7)
S5—Nb1—S6 86.46 (4) Nb1viii—S10—Csxii 109.02 (5)
S4iii—Nb1—Nb2iii 54.77 (3) S7—S10—Csviii 108.80 (8)
S7iii—Nb1—Nb2iii 54.64 (3) Nb2—S10—Csviii 168.71 (5)
S8iii—Nb1—Nb2iii 54.91 (3) Nb1viii—S10—Csviii 98.55 (4)
S10iii—Nb1—Nb2iii 54.37 (3)

Symmetry codes: (i) −x, −y, −z+1; (ii) x−1, −y+1/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2; (v) x, −y+1/2, z+1/2; (vi) x−1, y, z; (vii) −x, −y, −z; (viii) −x+1, y+1/2, −z+1/2; (ix) x, −y+1/2, z−1/2; (x) −x, y+1/2, −z+1/2; (xi) x+1, y, z; (xii) x+1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2357).

References

  1. Angenault, J., Cieren, X. & Quarton, M. (2000). J. Solid State Chem.153, 55–65.
  2. Bang, H., Kim, Y., Kim, S. & Kim, S. (2008). J. Solid State Chem.181, 1978–1802.
  3. Brec, R., Grenouilleau, P., Evain, M. & Rouxel, J. (1983). Rev. Chim. Mineral.20, 295–304.
  4. Do, J. & Yun, H. (1996). Inorg. Chem.35, 3729–3730. [DOI] [PubMed]
  5. Do, J. & Yun, H. (2009). Acta Cryst. E65, i56–i57. [DOI] [PMC free article] [PubMed]
  6. Dong, Y., Kim, S. & Yun, H. (2005b). Acta Cryst. C61, i25–i26. [DOI] [PubMed]
  7. Dong, Y., Kim, S., Yun, H. & Lim, H. (2005a). Bull. Kor. Chem. Soc.26, 309–311.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  10. Johnson, C. K. (1965). ORTEP Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
  11. Kim, C.-K. & Yun, H.-S. (2002). Acta Cryst. C58, i53–i54. [DOI] [PubMed]
  12. Kwak, J., Kim, C., Yun, H. & Do, J. (2007). Bull. Kor. Chem. Soc.28, 701–704.
  13. Kwak, J. & Yun, H. (2008). Bull. Kor. Chem. Soc.29, 273–275.
  14. Lee, S., Colombet, P., Ouvrard, G. & Brec, R. (1988). Inorg. Chem.27, 1291–1294.
  15. Rigaku (2006). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021768/wm2357sup1.cif

e-66-00i51-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021768/wm2357Isup2.hkl

e-66-00i51-Isup2.hkl (143.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES