Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 18;66(Pt 7):m814–m815. doi: 10.1107/S1600536810022877

Chloridotris[μ2-2-(dimethyl­amino)­ethano­lato]-μ3-hydroxido-tri-μ2-trifluoro­acetato-tetra­copper(II) tetra­hydro­furan solvate

S Tajammul Hussain a,*, Shahzad Abu Bakar a, Mohammad Mazhar b, Matthias Zeller c,*
PMCID: PMC3006744  PMID: 21587732

Abstract

The title compound, [Cu4(C2F3O2)3(C4H10NO)3Cl(OH)]·C4H8O or [Cu4(TFA)3(dmae)3Cl(OH)]·THF (dmae is dimeth­yl­amino­ethano­late, TFA is trifluoro­acetate and THF is tetra­hydro­furan), has an approximate mol­ecular threefold symmetry with three equivalent {Cu(dmae)(TFA)} units bridging between a Cu—Cl and a hydroxide unit, with the latter two lying on the mol­ecular threefold axis. However, in the solid state, the tetranuclear complex has Ci symmetry. The Cu atom bonded to the Cl atom has a distorted tetra­hedral geometry. The other three Cu atoms have distorted square-pyramidal geometries with an NO4 coordination environment. The bonds within the CuNO3 base of the pyramid range from 1.953 (2) to 2.033 (3) Å, while the apical Cu—O bonds are significantly longer, ranging from 2.286 (2) to 2.377 (2) Å. The square-pyramidal geometries are augmented by weak inter­actions towards a sixth O atom, forming a highly distorted octa­hedral coordination environment [long Cu—O distances = 2.712 (2)–2.824 (2) Å]. The hydroxide group is hydrogen bonded to the tetra­hydro­furan solvent mol­ecule. One of the –CF3 groups shows minor disorder over two positions, with a refined occupancy ratio of 0.894 (4):0.106 (5).

Related literature

For the synthesis of [Cu(dmae)Cl]4, used as starting material for title compound, see: Anwander et al. (1997). For general background to copper(II) complexes, see: Coastamagna et al. (1992). For related structures, see: Tahir et al. (2008); Shahid et al. (2009).graphic file with name e-66-0m814-scheme1.jpg

Experimental

Crystal data

  • [Cu4(C2F3O2)3(C4H10NO)3Cl(OH)]·C4H8O

  • M r = 982.21

  • Monoclinic, Inline graphic

  • a = 16.4353 (14) Å

  • b = 12.1893 (12) Å

  • c = 35.547 (3) Å

  • β = 94.678 (2)°

  • V = 7097.7 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.54 mm−1

  • T = 100 K

  • 0.41 × 0.38 × 0.28 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.673, T max = 0.746

  • 20465 measured reflections

  • 10267 independent reflections

  • 7515 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.103

  • S = 1.01

  • 10267 reflections

  • 467 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022877/fj2302sup1.cif

e-66-0m814-sup1.cif (35.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022877/fj2302Isup2.hkl

e-66-0m814-Isup2.hkl (502.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O11 1.00 1.73 2.723 (3) 174

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU.

supplementary crystallographic information

Comment

In recent years, there has been a considerable interest towards the synthesis of copper complexes; these complexes are extensively used in catalysis, enzymatic reactions, magnetism and molecular architecture (Coastamagna, Vargas et al., 1992). The present work is a continuation of earlier studies for the preparation and structure eludication of copper (II) complexes (Shahid et al., 2009). The motivation behind the synthesis of the title compound was to use it as a starting material for the synthesis of single source precursors for the deposition of thin films of copper oxides using aerosol assisted chemical vapor deposition (AACVD). We present here the synthesis and crystal structure of the title compound, [Cu4((CH3)2NCH2CH2O)3(F3CCOO)3(OH)Cl] or [Cu4(dmae)3(TFA)3(OH)Cl] (dmae = dimethylaminoethanolate, TFA = trifluoroacetate), which crystallized from THF as the mono solvate with the THF molecule tightly hydrogen bonded to the hydroxyl group.

The title compound has a slightly distorted molecular three fold symmetry with three equivalent Cu(dmae)(TFA) units bridging via their alcoholate oxygen atoms between a Cu—Cl and an hydroxyl unit with the latter two lying on a molecular pseudo threefold axis. The Cu atom bonded to the chlorine has a distorted tetrahedral geometry. The other three copper atoms have distorted square pyramidal geometries with a CNO4 coordination environment from the dmae O and N atoms, the hydroxyl O atom and two TFA anions. The TFA anions are bridging between two neighboring copper ions with one of the oxygen atoms being part of the base of the pyramid of one copper ion, and the other being in the apical position of the neighboring copper ion. The bonds within the CuNO3 bases of the pyramids are strong and quite similar in length with distances between 1.953 (2) and 2.033 (3) Å. The apical Cu—O bonds are significantly longer and between 2.286 (2) and 2.377 (2) Å, thus rendering the µ2-bridge of the TFA ions asymmetric. The square pyramidal geometries are augmented by weak interactions towards a fifth oxygen atom to form a highly distorted octahedral coordination environment (Cu—O distances: O3—Cu3 = 2.712 (2), O2—Cu2 = 2.780 (2), O1—Cu4 = 2.8240 (2) Å).

A similar motif as in the title compound was previously observed for two mixed metal copper-titanium complexes (Tahir et al., 2008). In these complexes the TFA anions were replaced by benzoate or 2-methyl-benzoate ligands, and the Cu—Cl unit was replaced by a titanium atom, which in turn was bonded to another larger Cu—Ti cluster. The [Cu3(dmae)3(TFA)3(OH)] unit in the title compound and the [Cu3((CH3)2NCH2CH2O)3(O2C—C6H5R)3(OH)] units in the Cu—Ti complexes (R = H, Me) are quite similar. In the 2-methyl-benzoate complexes the [Cu3((CH3)2NCH2CH2O)3(O2C—C6H5Me)3(OH)] unit is located on an actual crystallographic three fold axis. The carboxylate anions show coordination modes differing slightly from those observed in the title compound with some of the oxygen atoms being detached from the copper ions and interactions to the fifth oxygen atom, which are very weak in the title compound, being strengthened instead. The overall coordination environment - distorted square pyramidal CNO4 geometries with an additional weak interaction towards a fifth oxygen atom - is however the same in all three compounds, which shows the idiosyncracy commonly observed for copper(II) to form strongly distorted and highly flexible octahedral geometries with a set of four strong bonds in a square planar arrangement and two apical ligands at variable distances. Individual ligand atoms in these kinds of complexes can easily switch from tightly bound to only weakly coordinated as long as the overall coordination environment of the metal center is retained, and energy differences and activation barriers between the different arrangements that can be achieved that way are quite small. The difference in bonding arrangement in the three complexes in the solid state does thus probably not translate into a different chemical nature for the three complexes as the bonding environment around Cu(II) is very flexible and it can be assumed that in solution (i.e. upon release of packing effects) all complexes will attain the same connectivity pattern.

In the title compound the hydroxyl group is O—H···O hydrogen bonded to a tetrahydrofuran molecule (Table 1), which is embedded in a bowl shaped cleft of the complex formed by the three TFA ligands. No such host–guest behavior was observed for the other two related compounds (Tahir et al., 2008).

Experimental

Tetrameric N,N-dimethylaminoethanolato copper(II) chloride, [Cu(dmae)Cl]4 was prepared according to a literature method (Anwander et al., 1997). The title compound was prepared as follows: 1.25 g (1.67 mmole) of [Cu(dmae)Cl]4 in 20 ml THF were combined with 1.77 g (6.66 mmole) of Cu(F3CCOO)2 in 10 ml THF followed by the addition of 0.297 g (3.33 mmole) N,N-dimethylaminoethanol. The reaction mixture was stirred for 3 h and filtered through a cannula to remove any undissolved species. The filtrate was evaporated to dryness under vacuum, the solid was re-dissolved in 5 ml THF and placed in a vial with rubber seal at room temperature for one week to give blue crystals suitable for single-crystal X-ray diffraction analysis. Yield: 86% m.p. 393–394 K. Elemental Analysis for Cu4((CH3)2NCH2CH2O)3(F3CCOO)3(OH)Cl % calc: C, 21.99 H, 3.97 N, 4.27, % found: C, 22.10 H, 3.90 N, 4.53.

Refinement

The fluorine atoms bonded to C14 were refined as disordered over two mutually exclusive positions with a refined occupancy ratio of 0.894 (4) to 0.106 (5). C—F bond distances within this CF3 group were restrained to be the same within a standard uncertaincy of 0.02 Å and ADPs of the minor F atoms were constrained to be identical to those of the major moiety F atom opposite their position.

All hydrogen atoms were added in calculated positions with a C—H bond distances of 0.97 (methylene), 0.96 (methyl) and 1.00 Å (OH). They were refined with isotropic displacement parameteres Uiso of 1.5 (methyl, OH) or 1.2 times Ueq (methylene) of the adjacent carbon or oxygen atom.

Figures

Fig. 1.

Fig. 1.

Perspective view of the title compound with the atom numbering scheme. The displacement ellipsoids are at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Perspective view of the title compound, view down the pseudo three fold axis. The displacement ellipsoids are at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.

Crystal data

[Cu4(C2F3O2)3(C4H10NO)3Cl(OH)]·C4H8O F(000) = 3952
Mr = 982.21 Dx = 1.838 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1722 reflections
a = 16.4353 (14) Å θ = 2.4–30.1°
b = 12.1893 (12) Å µ = 2.54 mm1
c = 35.547 (3) Å T = 100 K
β = 94.678 (2)° Block, blue
V = 7097.7 (11) Å3 0.41 × 0.38 × 0.28 mm
Z = 8

Data collection

Bruker SMART APEX CCD diffractometer 10267 independent reflections
Radiation source: fine-focus sealed tube 7515 reflections with I > 2σ(I)
graphite Rint = 0.035
ω scans θmax = 31.6°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −12→22
Tmin = 0.673, Tmax = 0.746 k = −15→17
20465 measured reflections l = −37→50

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0396P)2 + 12.2423P] where P = (Fo2 + 2Fc2)/3
10267 reflections (Δ/σ)max = 0.001
467 parameters Δρmax = 0.92 e Å3
15 restraints Δρmin = −0.69 e Å3

Special details

Experimental. The fluorine atoms bonded to C14 were refined as disordered over two mutually exclusive positions with a refined occupancy ratio of 0.894 (4) to 0.106 (5). C-f bond distances within this CF3 group were restrained to be the same within a standard uncertaincy of 0.02 Angstrom and ADPs of the minor F atoms were constrained to be identical to those of the major moiety F atom opposite their position.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.3487 (2) 0.6333 (3) 0.27202 (8) 0.0213 (7)
H1A 0.2955 0.6699 0.2659 0.026*
H1B 0.3614 0.5884 0.2500 0.026*
C2 0.41488 (18) 0.7186 (3) 0.28039 (9) 0.0188 (7)
H2A 0.4693 0.6841 0.2796 0.023*
H2B 0.4097 0.7771 0.2610 0.023*
C3 0.3331 (2) 0.8365 (3) 0.31874 (10) 0.0253 (8)
H3A 0.3358 0.8958 0.3003 0.038*
H3B 0.3303 0.8679 0.3440 0.038*
H3C 0.2843 0.7919 0.3123 0.038*
C4 0.4799 (2) 0.8341 (3) 0.32982 (10) 0.0240 (7)
H4A 0.4845 0.8938 0.3117 0.036*
H4B 0.5289 0.7881 0.3305 0.036*
H4C 0.4745 0.8649 0.3550 0.036*
C5 0.16045 (19) 0.6242 (3) 0.37865 (9) 0.0203 (7)
H5A 0.1270 0.6612 0.3580 0.024*
H5B 0.1718 0.6772 0.3995 0.024*
C6 0.11552 (19) 0.5262 (3) 0.39231 (10) 0.0234 (7)
H6A 0.0666 0.5508 0.4045 0.028*
H6B 0.0974 0.4787 0.3706 0.028*
C7 0.1697 (2) 0.5093 (3) 0.45818 (10) 0.0283 (8)
H7A 0.1147 0.5027 0.4668 0.042*
H7B 0.1853 0.5868 0.4578 0.042*
H7C 0.2085 0.4690 0.4754 0.042*
C8 0.1435 (2) 0.3471 (3) 0.42013 (11) 0.0274 (8)
H8A 0.0861 0.3437 0.4256 0.041*
H8B 0.1769 0.3067 0.4396 0.041*
H8C 0.1498 0.3141 0.3954 0.041*
C9 0.24516 (18) 0.2700 (3) 0.31588 (9) 0.0180 (6)
H9A 0.2240 0.2915 0.2901 0.022*
H9B 0.2000 0.2358 0.3285 0.022*
C10 0.31478 (18) 0.1882 (3) 0.31392 (9) 0.0175 (6)
H10A 0.3235 0.1482 0.3381 0.021*
H10B 0.3008 0.1341 0.2937 0.021*
C11 0.3849 (2) 0.2949 (3) 0.26740 (9) 0.0238 (7)
H11A 0.3777 0.2355 0.2489 0.036*
H11B 0.4350 0.3355 0.2634 0.036*
H11C 0.3380 0.3448 0.2644 0.036*
C12 0.46108 (19) 0.1720 (3) 0.31080 (10) 0.0237 (7)
H12A 0.4524 0.1108 0.2930 0.036*
H12B 0.4661 0.1437 0.3367 0.036*
H12C 0.5112 0.2110 0.3058 0.036*
C13 0.37061 (18) 0.7122 (3) 0.42640 (9) 0.0166 (6)
C14 0.3775 (2) 0.8151 (3) 0.45127 (10) 0.0294 (8)
C15 0.36846 (19) 0.2779 (3) 0.42436 (9) 0.0194 (6)
C16 0.3779 (2) 0.1874 (3) 0.45482 (10) 0.0252 (7)
C17 0.55106 (18) 0.4851 (3) 0.34328 (8) 0.0157 (6)
C18 0.6447 (2) 0.4702 (3) 0.34677 (10) 0.0244 (7)
C19 0.5583 (2) 0.3809 (3) 0.44361 (11) 0.0290 (8)
H19A 0.5641 0.3255 0.4236 0.035*
H19B 0.5265 0.3485 0.4633 0.035*
C20 0.6412 (2) 0.4186 (4) 0.46031 (11) 0.0331 (9)
H20A 0.6634 0.3684 0.4805 0.040*
H20B 0.6805 0.4245 0.4407 0.040*
C21 0.6219 (2) 0.5295 (4) 0.47598 (13) 0.0426 (11)
H21A 0.6701 0.5785 0.4767 0.051*
H21B 0.6036 0.5231 0.5017 0.051*
C22 0.5532 (2) 0.5721 (3) 0.44827 (11) 0.0330 (9)
H22A 0.5109 0.6091 0.4620 0.040*
H22B 0.5747 0.6252 0.4305 0.040*
Cl1 0.13236 (5) 0.50928 (7) 0.27516 (2) 0.02051 (16)
Cu1 0.23798 (2) 0.50916 (3) 0.317137 (10) 0.01044 (8)
Cu2 0.39464 (2) 0.63387 (3) 0.350823 (10) 0.01304 (8)
Cu3 0.28392 (2) 0.48008 (3) 0.401847 (10) 0.01366 (9)
Cu4 0.39472 (2) 0.37149 (3) 0.343178 (10) 0.01343 (8)
F1 0.38789 (19) 0.2286 (2) 0.48959 (7) 0.0616 (8)
F2 0.44062 (16) 0.1223 (2) 0.45106 (7) 0.0499 (7)
F3 0.31145 (16) 0.1262 (2) 0.45306 (9) 0.0618 (8)
F4 0.45195 (17) 0.8352 (4) 0.46438 (13) 0.0738 (15) 0.894 (5)
F5 0.3505 (3) 0.9028 (2) 0.43088 (9) 0.0678 (12) 0.894 (5)
F6 0.3305 (2) 0.8121 (3) 0.47923 (9) 0.0526 (10) 0.894 (5)
F4B 0.418 (2) 0.8966 (17) 0.4377 (8) 0.0526 (10) 0.106 (5)
F5B 0.3162 (13) 0.855 (3) 0.4664 (11) 0.0738 (15) 0.106 (5)
F6B 0.420 (2) 0.788 (2) 0.4834 (6) 0.0678 (12) 0.106 (5)
F7 0.68329 (13) 0.5493 (2) 0.36747 (8) 0.0452 (7)
F8 0.67280 (13) 0.4751 (2) 0.31263 (7) 0.0474 (7)
F9 0.66948 (11) 0.37600 (18) 0.36251 (6) 0.0329 (5)
N1 0.40701 (15) 0.7666 (2) 0.31829 (7) 0.0158 (5)
N2 0.17040 (16) 0.4632 (2) 0.41990 (7) 0.0195 (6)
N3 0.39102 (15) 0.2481 (2) 0.30606 (7) 0.0163 (5)
O1 0.34445 (12) 0.56503 (18) 0.30425 (6) 0.0159 (4)
O2 0.23492 (12) 0.58621 (18) 0.36547 (6) 0.0155 (4)
O3 0.27429 (12) 0.36447 (17) 0.33646 (6) 0.0141 (4)
O4 0.40721 (13) 0.72338 (18) 0.39660 (6) 0.0187 (5)
O5 0.33254 (13) 0.6340 (2) 0.43810 (6) 0.0211 (5)
O6 0.32578 (13) 0.35798 (19) 0.43373 (6) 0.0192 (5)
O7 0.40130 (13) 0.25998 (19) 0.39509 (6) 0.0189 (5)
O8 0.51284 (12) 0.39551 (19) 0.34027 (6) 0.0196 (5)
O9 0.52741 (13) 0.58004 (19) 0.34305 (7) 0.0213 (5)
O10 0.38614 (12) 0.49500 (16) 0.37767 (6) 0.0122 (4)
H10 0.4325 0.4905 0.3976 0.018*
O11 0.51928 (15) 0.4780 (2) 0.42819 (8) 0.0318 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0238 (17) 0.0301 (18) 0.0103 (14) −0.0031 (14) 0.0035 (12) 0.0015 (13)
C2 0.0169 (15) 0.0227 (17) 0.0180 (15) 0.0011 (12) 0.0087 (12) 0.0044 (13)
C3 0.0224 (17) 0.0220 (18) 0.0321 (19) 0.0076 (14) 0.0060 (14) 0.0069 (15)
C4 0.0229 (17) 0.0194 (17) 0.0296 (18) −0.0061 (13) 0.0021 (14) 0.0040 (14)
C5 0.0201 (16) 0.0214 (17) 0.0199 (15) 0.0065 (13) 0.0046 (12) 0.0013 (13)
C6 0.0168 (15) 0.0282 (19) 0.0250 (17) 0.0009 (13) 0.0007 (13) −0.0003 (14)
C7 0.0271 (17) 0.040 (2) 0.0189 (17) −0.0023 (16) 0.0088 (14) −0.0038 (15)
C8 0.0244 (18) 0.028 (2) 0.0312 (19) −0.0064 (14) 0.0074 (15) 0.0034 (15)
C9 0.0167 (15) 0.0161 (15) 0.0212 (16) −0.0021 (12) 0.0008 (12) −0.0019 (13)
C10 0.0178 (15) 0.0175 (16) 0.0171 (15) −0.0017 (12) 0.0009 (12) −0.0018 (12)
C11 0.0274 (18) 0.0251 (18) 0.0197 (16) −0.0027 (14) 0.0075 (14) −0.0045 (14)
C12 0.0168 (16) 0.0243 (18) 0.0297 (18) 0.0062 (13) 0.0010 (13) −0.0089 (15)
C13 0.0161 (15) 0.0173 (15) 0.0156 (15) 0.0034 (12) −0.0033 (12) −0.0047 (12)
C14 0.036 (2) 0.0260 (19) 0.0273 (19) −0.0043 (16) 0.0099 (16) −0.0086 (16)
C15 0.0195 (16) 0.0184 (16) 0.0197 (16) −0.0030 (13) −0.0031 (12) 0.0024 (13)
C16 0.035 (2) 0.0217 (18) 0.0199 (17) 0.0028 (15) 0.0053 (14) 0.0050 (14)
C17 0.0125 (13) 0.0211 (16) 0.0139 (14) 0.0018 (12) 0.0036 (11) 0.0025 (12)
C18 0.0166 (15) 0.0246 (18) 0.0324 (19) 0.0038 (13) 0.0054 (14) 0.0113 (15)
C19 0.0284 (19) 0.029 (2) 0.0283 (19) 0.0025 (15) −0.0032 (15) 0.0047 (16)
C20 0.0233 (18) 0.048 (3) 0.0270 (19) 0.0037 (17) −0.0060 (15) 0.0058 (18)
C21 0.032 (2) 0.049 (3) 0.044 (3) −0.0038 (19) −0.0155 (19) −0.007 (2)
C22 0.029 (2) 0.030 (2) 0.037 (2) 0.0000 (16) −0.0118 (16) −0.0089 (17)
Cl1 0.0180 (3) 0.0238 (4) 0.0185 (4) 0.0001 (3) −0.0054 (3) 0.0021 (3)
Cu1 0.01002 (16) 0.01276 (18) 0.00839 (16) −0.00009 (13) −0.00024 (12) 0.00033 (13)
Cu2 0.01405 (18) 0.01354 (18) 0.01150 (17) −0.00088 (14) 0.00094 (13) 0.00082 (14)
Cu3 0.01306 (17) 0.01724 (19) 0.01080 (17) 0.00010 (14) 0.00167 (13) 0.00157 (14)
Cu4 0.01185 (18) 0.01471 (18) 0.01367 (17) 0.00029 (14) 0.00071 (13) −0.00261 (14)
F1 0.115 (2) 0.0484 (17) 0.0214 (13) 0.0182 (16) 0.0036 (13) 0.0092 (12)
F2 0.0589 (17) 0.0486 (16) 0.0429 (15) 0.0237 (13) 0.0085 (12) 0.0191 (13)
F3 0.0555 (17) 0.0442 (17) 0.086 (2) −0.0120 (13) 0.0071 (15) 0.0327 (16)
F4 0.0287 (16) 0.099 (3) 0.093 (3) −0.0140 (17) 0.0005 (16) −0.075 (3)
F5 0.121 (4) 0.0276 (16) 0.056 (2) 0.0143 (18) 0.012 (2) −0.0113 (15)
F6 0.061 (2) 0.056 (2) 0.0442 (19) −0.0053 (16) 0.0264 (16) −0.0278 (16)
F4B 0.061 (2) 0.056 (2) 0.0442 (19) −0.0053 (16) 0.0264 (16) −0.0278 (16)
F5B 0.0287 (16) 0.099 (3) 0.093 (3) −0.0140 (17) 0.0005 (16) −0.075 (3)
F6B 0.121 (4) 0.0276 (16) 0.056 (2) 0.0143 (18) 0.012 (2) −0.0113 (15)
F7 0.0210 (11) 0.0334 (13) 0.0787 (19) −0.0063 (10) −0.0113 (11) 0.0017 (13)
F8 0.0272 (12) 0.075 (2) 0.0427 (15) 0.0169 (12) 0.0203 (10) 0.0258 (13)
F9 0.0180 (10) 0.0303 (12) 0.0505 (14) 0.0051 (8) 0.0039 (9) 0.0172 (11)
N1 0.0137 (12) 0.0168 (13) 0.0173 (13) 0.0012 (10) 0.0034 (10) 0.0015 (10)
N2 0.0181 (13) 0.0260 (15) 0.0148 (13) −0.0005 (11) 0.0039 (10) 0.0009 (11)
N3 0.0154 (12) 0.0155 (13) 0.0180 (13) 0.0011 (10) 0.0011 (10) −0.0029 (11)
O1 0.0160 (11) 0.0204 (11) 0.0114 (10) −0.0034 (9) 0.0026 (8) 0.0016 (9)
O2 0.0151 (10) 0.0186 (11) 0.0128 (10) 0.0018 (9) 0.0018 (8) 0.0002 (9)
O3 0.0128 (10) 0.0139 (10) 0.0153 (10) 0.0000 (8) −0.0006 (8) −0.0019 (8)
O4 0.0204 (11) 0.0191 (12) 0.0168 (11) −0.0024 (9) 0.0022 (9) −0.0016 (9)
O5 0.0227 (12) 0.0260 (13) 0.0147 (11) −0.0046 (10) 0.0018 (9) −0.0039 (10)
O6 0.0211 (12) 0.0200 (12) 0.0165 (11) 0.0013 (9) 0.0021 (9) 0.0037 (9)
O7 0.0222 (11) 0.0179 (11) 0.0167 (11) 0.0023 (9) 0.0020 (9) 0.0009 (9)
O8 0.0138 (11) 0.0213 (12) 0.0242 (12) 0.0000 (9) 0.0048 (9) −0.0032 (10)
O9 0.0155 (11) 0.0201 (12) 0.0285 (13) 0.0027 (9) 0.0030 (9) 0.0045 (10)
O10 0.0122 (9) 0.0135 (10) 0.0109 (9) −0.0005 (8) 0.0002 (7) −0.0007 (8)
O11 0.0296 (14) 0.0249 (14) 0.0373 (15) 0.0007 (11) −0.0193 (11) −0.0005 (12)

Geometric parameters (Å, °)

C1—O1 1.422 (4) C14—F6 1.308 (4)
C1—C2 1.516 (5) C14—F4B 1.310 (14)
C1—H1A 0.9900 C14—F6B 1.333 (15)
C1—H1B 0.9900 C14—F5 1.346 (5)
C2—N1 1.484 (4) C15—O7 1.230 (4)
C2—H2A 0.9900 C15—O6 1.263 (4)
C2—H2B 0.9900 C15—C16 1.545 (5)
C3—N1 1.485 (4) C16—F2 1.316 (4)
C3—H3A 0.9800 C16—F3 1.319 (4)
C3—H3B 0.9800 C16—F1 1.332 (4)
C3—H3C 0.9800 C17—O9 1.221 (4)
C4—N1 1.484 (4) C17—O8 1.260 (4)
C4—H4A 0.9800 C17—C18 1.545 (4)
C4—H4B 0.9800 C18—F9 1.326 (4)
C4—H4C 0.9800 C18—F8 1.334 (4)
C5—O2 1.423 (3) C18—F7 1.340 (4)
C5—C6 1.505 (5) C19—O11 1.434 (4)
C5—H5A 0.9900 C19—C20 1.512 (5)
C5—H5B 0.9900 C19—H19A 0.9900
C6—N2 1.490 (4) C19—H19B 0.9900
C6—H6A 0.9900 C20—C21 1.506 (6)
C6—H6B 0.9900 C20—H20A 0.9900
C7—N2 1.473 (4) C20—H20B 0.9900
C7—H7A 0.9800 C21—C22 1.528 (5)
C7—H7B 0.9800 C21—H21A 0.9900
C7—H7C 0.9800 C21—H21B 0.9900
C8—N2 1.483 (4) C22—O11 1.439 (4)
C8—H8A 0.9800 C22—H22A 0.9900
C8—H8B 0.9800 C22—H22B 0.9900
C8—H8C 0.9800 Cl1—Cu1 2.1948 (8)
C9—O3 1.426 (4) Cu1—O2 1.962 (2)
C9—C10 1.523 (4) Cu1—O1 1.966 (2)
C9—H9A 0.9900 Cu1—O3 1.968 (2)
C9—H9B 0.9900 Cu2—O10 1.954 (2)
C10—N3 1.496 (4) Cu2—O4 1.956 (2)
C10—H10A 0.9900 Cu2—O1 1.975 (2)
C10—H10B 0.9900 Cu2—N1 2.009 (3)
C11—N3 1.484 (4) Cu2—O9 2.317 (2)
C11—H11A 0.9800 Cu3—O2 1.956 (2)
C11—H11B 0.9800 Cu3—O10 1.957 (2)
C11—H11C 0.9800 Cu3—O6 1.961 (2)
C12—N3 1.478 (4) Cu3—N2 2.032 (3)
C12—H12A 0.9800 Cu3—O5 2.377 (2)
C12—H12B 0.9800 Cu4—O10 1.954 (2)
C12—H12C 0.9800 Cu4—O8 1.974 (2)
C13—O5 1.231 (4) Cu4—O3 1.976 (2)
C13—O4 1.267 (4) Cu4—N3 1.998 (3)
C13—C14 1.533 (5) Cu4—O7 2.287 (2)
C14—F5B 1.278 (15) O10—H10 0.9990
C14—F4 1.296 (4)
O1—C1—C2 109.0 (2) F8—C18—C17 109.7 (3)
O1—C1—H1A 109.9 F7—C18—C17 112.5 (3)
C2—C1—H1A 109.9 O11—C19—C20 105.1 (3)
O1—C1—H1B 109.9 O11—C19—H19A 110.7
C2—C1—H1B 109.9 C20—C19—H19A 110.7
H1A—C1—H1B 108.3 O11—C19—H19B 110.7
N1—C2—C1 109.5 (2) C20—C19—H19B 110.7
N1—C2—H2A 109.8 H19A—C19—H19B 108.8
C1—C2—H2A 109.8 C21—C20—C19 102.0 (3)
N1—C2—H2B 109.8 C21—C20—H20A 111.4
C1—C2—H2B 109.8 C19—C20—H20A 111.4
H2A—C2—H2B 108.2 C21—C20—H20B 111.4
N1—C3—H3A 109.5 C19—C20—H20B 111.4
N1—C3—H3B 109.5 H20A—C20—H20B 109.2
H3A—C3—H3B 109.5 C20—C21—C22 103.5 (3)
N1—C3—H3C 109.5 C20—C21—H21A 111.1
H3A—C3—H3C 109.5 C22—C21—H21A 111.1
H3B—C3—H3C 109.5 C20—C21—H21B 111.1
N1—C4—H4A 109.5 C22—C21—H21B 111.1
N1—C4—H4B 109.5 H21A—C21—H21B 109.0
H4A—C4—H4B 109.5 O11—C22—C21 106.5 (3)
N1—C4—H4C 109.5 O11—C22—H22A 110.4
H4A—C4—H4C 109.5 C21—C22—H22A 110.4
H4B—C4—H4C 109.5 O11—C22—H22B 110.4
O2—C5—C6 107.8 (3) C21—C22—H22B 110.4
O2—C5—H5A 110.1 H22A—C22—H22B 108.6
C6—C5—H5A 110.1 O2—Cu1—O1 97.18 (9)
O2—C5—H5B 110.1 O2—Cu1—O3 98.75 (9)
C6—C5—H5B 110.1 O1—Cu1—O3 98.13 (9)
H5A—C5—H5B 108.5 O2—Cu1—Cl1 121.31 (6)
N2—C6—C5 109.6 (3) O1—Cu1—Cl1 120.73 (7)
N2—C6—H6A 109.8 O3—Cu1—Cl1 116.00 (6)
C5—C6—H6A 109.8 O10—Cu2—O4 94.81 (9)
N2—C6—H6B 109.8 O10—Cu2—O1 89.98 (9)
C5—C6—H6B 109.8 O4—Cu2—O1 160.49 (9)
H6A—C6—H6B 108.2 O10—Cu2—N1 173.56 (9)
N2—C7—H7A 109.5 O4—Cu2—N1 91.20 (10)
N2—C7—H7B 109.5 O1—Cu2—N1 85.10 (10)
H7A—C7—H7B 109.5 O10—Cu2—O9 85.32 (8)
N2—C7—H7C 109.5 O4—Cu2—O9 102.75 (9)
H7A—C7—H7C 109.5 O1—Cu2—O9 96.48 (8)
H7B—C7—H7C 109.5 N1—Cu2—O9 91.08 (9)
N2—C8—H8A 109.5 O2—Cu3—O10 88.29 (8)
N2—C8—H8B 109.5 O2—Cu3—O6 172.03 (9)
H8A—C8—H8B 109.5 O10—Cu3—O6 92.93 (9)
N2—C8—H8C 109.5 O2—Cu3—N2 86.38 (10)
H8A—C8—H8C 109.5 O10—Cu3—N2 172.39 (10)
H8B—C8—H8C 109.5 O6—Cu3—N2 91.62 (10)
O3—C9—C10 109.3 (2) O2—Cu3—O5 86.47 (9)
O3—C9—H9A 109.8 O10—Cu3—O5 84.38 (8)
C10—C9—H9A 109.8 O6—Cu3—O5 101.48 (9)
O3—C9—H9B 109.8 N2—Cu3—O5 100.69 (10)
C10—C9—H9B 109.8 O10—Cu4—O8 92.30 (9)
H9A—C9—H9B 108.3 O10—Cu4—O3 89.22 (8)
N3—C10—C9 109.5 (3) O8—Cu4—O3 168.40 (9)
N3—C10—H10A 109.8 O10—Cu4—N3 173.88 (9)
C9—C10—H10A 109.8 O8—Cu4—N3 93.10 (10)
N3—C10—H10B 109.8 O3—Cu4—N3 84.91 (9)
C9—C10—H10B 109.8 O10—Cu4—O7 87.29 (8)
H10A—C10—H10B 108.2 O8—Cu4—O7 98.53 (9)
N3—C11—H11A 109.5 O3—Cu4—O7 93.03 (8)
N3—C11—H11B 109.5 N3—Cu4—O7 94.73 (9)
H11A—C11—H11B 109.5 C4—N1—C2 110.0 (2)
N3—C11—H11C 109.5 C4—N1—C3 108.8 (3)
H11A—C11—H11C 109.5 C2—N1—C3 111.6 (2)
H11B—C11—H11C 109.5 C4—N1—Cu2 113.88 (19)
N3—C12—H12A 109.5 C2—N1—Cu2 103.03 (19)
N3—C12—H12B 109.5 C3—N1—Cu2 109.54 (19)
H12A—C12—H12B 109.5 C7—N2—C8 109.5 (3)
N3—C12—H12C 109.5 C7—N2—C6 111.2 (3)
H12A—C12—H12C 109.5 C8—N2—C6 109.3 (3)
H12B—C12—H12C 109.5 C7—N2—Cu3 109.3 (2)
O5—C13—O4 130.9 (3) C8—N2—Cu3 112.3 (2)
O5—C13—C14 117.0 (3) C6—N2—Cu3 105.17 (19)
O4—C13—C14 112.1 (3) C12—N3—C11 109.9 (2)
F4—C14—F6 109.3 (4) C12—N3—C10 109.2 (3)
F5B—C14—F4B 108 (2) C11—N3—C10 111.5 (2)
F5B—C14—F6B 96 (2) C12—N3—Cu4 114.56 (19)
F4B—C14—F6B 105 (2) C11—N3—Cu4 108.6 (2)
F4—C14—F5 107.6 (4) C10—N3—Cu4 103.00 (18)
F6—C14—F5 104.0 (3) C1—O1—Cu1 119.59 (18)
F4—C14—C13 112.7 (3) C1—O1—Cu2 112.44 (19)
F6—C14—C13 113.2 (3) Cu1—O1—Cu2 105.70 (9)
F4B—C14—C13 115.1 (10) C5—O2—Cu3 108.43 (17)
F6B—C14—C13 107.4 (12) C5—O2—Cu1 121.87 (18)
F5—C14—C13 109.4 (3) Cu3—O2—Cu1 102.93 (10)
O7—C15—O6 130.7 (3) C9—O3—Cu1 117.73 (17)
O7—C15—C16 116.1 (3) C9—O3—Cu4 112.83 (17)
O6—C15—C16 113.2 (3) Cu1—O3—Cu4 106.00 (10)
F2—C16—F3 107.9 (3) C13—O4—Cu2 127.6 (2)
F2—C16—F1 106.5 (3) C13—O5—Cu3 125.9 (2)
F3—C16—F1 107.2 (3) C15—O6—Cu3 127.6 (2)
F2—C16—C15 113.2 (3) C15—O7—Cu4 125.6 (2)
F3—C16—C15 109.6 (3) C17—O8—Cu4 127.6 (2)
F1—C16—C15 112.2 (3) C17—O9—Cu2 124.8 (2)
O9—C17—O8 131.7 (3) Cu2—O10—Cu4 110.45 (10)
O9—C17—C18 115.2 (3) Cu2—O10—Cu3 113.15 (10)
O8—C17—C18 113.1 (3) Cu4—O10—Cu3 108.20 (9)
F9—C18—F8 107.8 (3) Cu2—O10—H10 108.2
F9—C18—F7 106.0 (3) Cu4—O10—H10 108.3
F8—C18—F7 106.5 (3) Cu3—O10—H10 108.4
F9—C18—C17 113.9 (3) C19—O11—C22 109.0 (3)
O1—C1—C2—N1 −45.7 (3) O10—Cu3—O2—C5 −165.02 (19)
O2—C5—C6—N2 52.7 (3) N2—Cu3—O2—C5 20.4 (2)
O3—C9—C10—N3 −42.2 (3) O5—Cu3—O2—C5 −80.55 (19)
O5—C13—C14—F5B −46 (3) O10—Cu3—O2—Cu1 64.62 (9)
O4—C13—C14—F5B 135 (3) N2—Cu3—O2—Cu1 −109.95 (11)
O5—C13—C14—F4 114.5 (4) O5—Cu3—O2—Cu1 149.09 (9)
O4—C13—C14—F4 −64.8 (5) O1—Cu1—O2—C5 146.6 (2)
O5—C13—C14—F6 −10.3 (5) O3—Cu1—O2—C5 −113.9 (2)
O4—C13—C14—F6 170.4 (3) Cl1—Cu1—O2—C5 13.8 (2)
O5—C13—C14—F4B −179.5 (19) O1—Cu1—O2—Cu3 −91.71 (10)
O4—C13—C14—F4B 1.2 (19) O3—Cu1—O2—Cu3 7.71 (10)
O5—C13—C14—F6B 63.9 (19) Cl1—Cu1—O2—Cu3 135.49 (6)
O4—C13—C14—F6B −115.4 (19) C10—C9—O3—Cu1 138.4 (2)
O5—C13—C14—F5 −125.8 (4) C10—C9—O3—Cu4 14.3 (3)
O4—C13—C14—F5 54.9 (4) O2—Cu1—O3—C9 146.95 (19)
O7—C15—C16—F2 21.6 (4) O1—Cu1—O3—C9 −114.43 (19)
O6—C15—C16—F2 −160.1 (3) Cl1—Cu1—O3—C9 15.7 (2)
O7—C15—C16—F3 −98.9 (4) O2—Cu1—O3—Cu4 −85.68 (10)
O6—C15—C16—F3 79.5 (4) O1—Cu1—O3—Cu4 12.93 (11)
O7—C15—C16—F1 142.1 (3) Cl1—Cu1—O3—Cu4 143.02 (6)
O6—C15—C16—F1 −39.5 (4) O10—Cu4—O3—C9 −171.33 (19)
O9—C17—C18—F9 153.1 (3) O8—Cu4—O3—C9 91.0 (5)
O8—C17—C18—F9 −28.5 (4) N3—Cu4—O3—C9 10.4 (2)
O9—C17—C18—F8 −86.0 (4) O7—Cu4—O3—C9 −84.08 (19)
O8—C17—C18—F8 92.4 (3) O10—Cu4—O3—Cu1 58.43 (10)
O9—C17—C18—F7 32.4 (4) O8—Cu4—O3—Cu1 −39.2 (5)
O8—C17—C18—F7 −149.2 (3) N3—Cu4—O3—Cu1 −119.84 (11)
O11—C19—C20—C21 36.9 (4) O7—Cu4—O3—Cu1 145.67 (9)
C19—C20—C21—C22 −33.5 (4) O5—C13—O4—Cu2 17.2 (5)
C20—C21—C22—O11 19.0 (4) C14—C13—O4—Cu2 −163.6 (2)
C1—C2—N1—C4 169.3 (3) O10—Cu2—O4—C13 −39.4 (3)
C1—C2—N1—C3 −69.9 (3) O1—Cu2—O4—C13 64.3 (4)
C1—C2—N1—Cu2 47.6 (3) N1—Cu2—O4—C13 142.9 (3)
O4—Cu2—N1—C4 51.0 (2) O9—Cu2—O4—C13 −125.7 (3)
O1—Cu2—N1—C4 −148.2 (2) O4—C13—O5—Cu3 −15.7 (5)
O9—Cu2—N1—C4 −51.8 (2) C14—C13—O5—Cu3 165.1 (2)
O4—Cu2—N1—C2 170.02 (17) O2—Cu3—O5—C13 −51.2 (3)
O1—Cu2—N1—C2 −29.17 (17) O10—Cu3—O5—C13 37.4 (3)
O9—Cu2—N1—C2 67.24 (17) O6—Cu3—O5—C13 129.2 (3)
O4—Cu2—N1—C3 −71.1 (2) N2—Cu3—O5—C13 −136.9 (3)
O1—Cu2—N1—C3 89.7 (2) O7—C15—O6—Cu3 8.0 (5)
O9—Cu2—N1—C3 −173.9 (2) C16—C15—O6—Cu3 −170.1 (2)
C5—C6—N2—C7 84.5 (3) O10—Cu3—O6—C15 −41.7 (3)
C5—C6—N2—C8 −154.5 (3) N2—Cu3—O6—C15 132.2 (3)
C5—C6—N2—Cu3 −33.7 (3) O5—Cu3—O6—C15 −126.6 (3)
O2—Cu3—N2—C7 −111.5 (2) O6—C15—O7—Cu4 −1.2 (5)
O6—Cu3—N2—C7 76.2 (2) C16—C15—O7—Cu4 176.9 (2)
O5—Cu3—N2—C7 −25.8 (2) O10—Cu4—O7—C15 30.6 (3)
O2—Cu3—N2—C8 126.7 (2) O8—Cu4—O7—C15 122.6 (3)
O6—Cu3—N2—C8 −45.5 (2) O3—Cu4—O7—C15 −58.4 (3)
O5—Cu3—N2—C8 −147.5 (2) N3—Cu4—O7—C15 −143.6 (3)
O2—Cu3—N2—C6 7.9 (2) O9—C17—O8—Cu4 −12.4 (5)
O6—Cu3—N2—C6 −164.4 (2) C18—C17—O8—Cu4 169.5 (2)
O5—Cu3—N2—C6 93.6 (2) O10—Cu4—O8—C17 −30.2 (3)
C9—C10—N3—C12 170.1 (3) O3—Cu4—O8—C17 67.2 (6)
C9—C10—N3—C11 −68.2 (3) N3—Cu4—O8—C17 146.9 (3)
C9—C10—N3—Cu4 48.0 (3) O7—Cu4—O8—C17 −117.8 (3)
O8—Cu4—N3—C12 41.2 (2) O8—C17—O9—Cu2 15.4 (5)
O3—Cu4—N3—C12 −150.3 (2) C18—C17—O9—Cu2 −166.5 (2)
O7—Cu4—N3—C12 −57.7 (2) O10—Cu2—O9—C17 24.9 (3)
O8—Cu4—N3—C11 −82.1 (2) O4—Cu2—O9—C17 118.8 (3)
O3—Cu4—N3—C11 86.44 (19) O1—Cu2—O9—C17 −64.6 (3)
O7—Cu4—N3—C11 179.06 (19) N1—Cu2—O9—C17 −149.8 (3)
O8—Cu4—N3—C10 159.62 (18) O4—Cu2—O10—Cu4 −168.32 (10)
O3—Cu4—N3—C10 −31.84 (18) O1—Cu2—O10—Cu4 30.61 (10)
O7—Cu4—N3—C10 60.78 (18) O9—Cu2—O10—Cu4 −65.89 (10)
C2—C1—O1—Cu1 144.4 (2) O4—Cu2—O10—Cu3 70.20 (11)
C2—C1—O1—Cu2 19.6 (3) O1—Cu2—O10—Cu3 −90.86 (11)
O2—Cu1—O1—C1 −115.4 (2) O9—Cu2—O10—Cu3 172.64 (11)
O3—Cu1—O1—C1 144.7 (2) O8—Cu4—O10—Cu2 72.73 (11)
Cl1—Cu1—O1—C1 17.8 (2) O3—Cu4—O10—Cu2 −95.76 (10)
O2—Cu1—O1—Cu2 12.61 (11) O7—Cu4—O10—Cu2 171.17 (10)
O3—Cu1—O1—Cu2 −87.35 (10) O8—Cu4—O10—Cu3 −162.91 (10)
Cl1—Cu1—O1—Cu2 145.78 (6) O3—Cu4—O10—Cu3 28.60 (10)
O10—Cu2—O1—C1 −170.14 (19) O7—Cu4—O10—Cu3 −64.47 (10)
O4—Cu2—O1—C1 85.4 (3) O2—Cu3—O10—Cu2 23.58 (11)
N1—Cu2—O1—C1 5.7 (2) O6—Cu3—O10—Cu2 −164.31 (11)
O9—Cu2—O1—C1 −84.9 (2) O5—Cu3—O10—Cu2 −63.05 (10)
O10—Cu2—O1—Cu1 57.71 (10) O2—Cu3—O10—Cu4 −99.15 (10)
O4—Cu2—O1—Cu1 −46.8 (3) O6—Cu3—O10—Cu4 72.97 (11)
N1—Cu2—O1—Cu1 −126.46 (11) O5—Cu3—O10—Cu4 174.22 (10)
O9—Cu2—O1—Cu1 143.00 (10) C20—C19—O11—C22 −25.9 (4)
C6—C5—O2—Cu3 −44.1 (3) C21—C22—O11—C19 4.2 (4)
C6—C5—O2—Cu1 74.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O10—H10···O11 1.00 1.73 2.723 (3) 174

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2302).

References

  1. Anwander, R., Munck, F. C., Priermeier, T., Scherer, W., Runte, O. & Herrmann, W. A. (1997). Inorg. Chem.36, 3545–3552. [DOI] [PubMed]
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc, Madison, Wisconsin, USA.
  3. Coastamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev.119, 67–88.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  5. Shahid, M., Mazhar, M., Zeller, M. & Hunter, A. D. (2009). Acta Cryst. E65, m345–m346. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tahir, A. A., Hamid, M., Mazhar, M., Zeller, M., Hunter, A. D., Nadeem, M. & Akhtar, M. J. (2008). Dalton Trans. pp. 1224–1232. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022877/fj2302sup1.cif

e-66-0m814-sup1.cif (35.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022877/fj2302Isup2.hkl

e-66-0m814-Isup2.hkl (502.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES