Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 23;66(Pt 7):o1755. doi: 10.1107/S1600536810023512

p-Tolyl bis­(o-tolyl­amido)­phosphinate

Fahimeh Sabbaghi a,*, Teresa Mancilla Percino b, Mehrdad Pourayoubi c, Marco A Leyva b
PMCID: PMC3006771  PMID: 21587971

Abstract

In the title compound, C21H23N2O2P, the P atom has a distorted tetra­hedral configuration. The O atom of the OC6H4-4-CH3 group and the N atoms show sp 2 character. In the crystal, adjacent mol­ecules are linked by N—H⋯O hydrogen bonds into helical chains parallel to the b axis.

Related literature

For a related structure, see: Pourayoubi et al. (2009).graphic file with name e-66-o1755-scheme1.jpg

Experimental

Crystal data

  • C21H23N2O2P

  • M r = 366.38

  • Monoclinic, Inline graphic

  • a = 12.157 (3) Å

  • b = 8.978 (2) Å

  • c = 18.080 (5) Å

  • β = 101.569 (1)°

  • V = 1933.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.6 × 0.54 × 0.47 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.860, T max = 0.968

  • 23372 measured reflections

  • 4402 independent reflections

  • 3097 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.128

  • S = 1.06

  • 4402 reflections

  • 257 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023512/ng2779sup1.cif

e-66-o1755-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023512/ng2779Isup2.hkl

e-66-o1755-Isup2.hkl (211.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 (2) 2.02 (2) 2.8963 (19) 161 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

Support of this investigation by Islamic Azad University-Zanjan Branch is gratefully acknowledged.

supplementary crystallographic information

Comment

In the previous work, the structure determination of p-tolyl bis(p-tolylamido)phosphate (Pourayoubi et al., 2009) has been investigated; we report here on the crystal structure of title compound (Fig. 1). The title compound was synthesized from the reaction of (4-tolyl)-dichlorophosphate with an excess amount of ortho-toluidine (1:4 mole ratio). Single crystals were obtained from CHCl3/n-C6H14 at room temperature. Molecular structure of [4-H3C—C6H4O]P(O)[NHC6H4-2-CH3]2 is shown in Fig. 1. The phosphorus atom has a distorted tetrahedral configuration. The bond angles around P atom are in the range of 96.87 (7)° to 118.95 (8)°. The oxygen atom of OC6H4-4-CH3 moiety and the nitrogen atoms show sp2 character (the C15—O2—P1 angle is 124.67 (11)°, the C1—N1—P1 and C8—N2—P1 are 123.77 (12)° and 127.71 (12)°, respectively. In the crystal structure, molecules are linked via N—H···O hydrogen bonds (N1···O1 = 2.8963 (19) Å) into an extended chain (Fig. 2) parallel to the b axis.

Experimental

To a solution of (4-tolyl)-dichlorophosphate (2.250 g, 10 mmol) in 15 ml dry acetonitrile, a solution of ortho-toluidine (4.286 g, 40 mmol) in 30 ml acetonitrile was added at 0°C. After 4 h stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals of the product were obtained from a solution of CHCl3/n-C6H14 at room temperature.

Refinement

H atoms of both nitrogen were found by Fourier differences, it was necessary to restrain distances setting the NH as 1.01 Å instead of 0.86 Å as the ideal would be, but under this proposal to refine, both distances are obtained, 0.9119 (152) Å for N1—H1 and 0.8982 (153) Å for N2—H21,respectively, which are more realistic. The difference can be due to the effect of hydrogen bond generates by N1—H1—O1. All other hydrogen atoms were placed geometrically.

Figures

Fig. 1.

Fig. 1.

A general view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of N—H···O hydrogen bond.

Crystal data

C21H23N2O2P F(000) = 776
Mr = 366.38 Dx = 1.259 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 600 reflections
a = 12.157 (3) Å θ = 1–14°
b = 8.978 (2) Å µ = 0.16 mm1
c = 18.080 (5) Å T = 293 K
β = 101.569 (1)° Priem, colourless
V = 1933.3 (8) Å3 0.6 × 0.54 × 0.47 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 4402 independent reflections
Radiation source: Enraf Nonius FR590 3097 reflections with I > 2σ(I)
graphite Rint = 0.048
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 2.6°
CCD rotation images, thick slices scans h = −15→15
Absorption correction: multi-scan (Blessing, 1995) k = −10→11
Tmin = 0.860, Tmax = 0.968 l = −19→23
23372 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.2653P] where P = (Fo2 + 2Fc2)/3
4402 reflections (Δ/σ)max = 0.015
257 parameters Δρmax = 0.18 e Å3
2 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.28763 (13) 0.18689 (18) 0.26516 (10) 0.0359 (4)
C2 0.25191 (16) 0.3029 (2) 0.21582 (11) 0.0464 (4)
H2 0.3036 0.3535 0.1936 0.056*
C3 0.14023 (18) 0.3444 (3) 0.19930 (13) 0.0606 (6)
H3 0.1171 0.4232 0.1665 0.073*
C4 0.06346 (18) 0.2691 (3) 0.23138 (15) 0.0693 (7)
H4 −0.0121 0.2951 0.2197 0.083*
C5 0.09918 (17) 0.1546 (3) 0.28107 (14) 0.0620 (6)
H5 0.0466 0.1044 0.3027 0.074*
C6 0.21099 (15) 0.1116 (2) 0.29999 (11) 0.0446 (4)
C7 0.24895 (19) −0.0078 (2) 0.35748 (13) 0.0628 (6)
H7A 0.1847 −0.0521 0.3722 0.094*
H7B 0.2969 0.0351 0.401 0.094*
H7C 0.2896 −0.0827 0.3361 0.094*
C8 0.43487 (15) 0.36933 (19) 0.41804 (9) 0.0395 (4)
C9 0.47389 (18) 0.2563 (2) 0.46833 (11) 0.0518 (5)
H9 0.5289 0.1915 0.4585 0.062*
C10 0.4311 (2) 0.2392 (3) 0.53349 (12) 0.0656 (6)
H10 0.4559 0.1615 0.5666 0.079*
C11 0.3524 (2) 0.3374 (3) 0.54873 (13) 0.0687 (7)
H11 0.3252 0.3283 0.5931 0.082*
C12 0.31363 (18) 0.4494 (3) 0.49840 (12) 0.0614 (6)
H12 0.2603 0.5155 0.5095 0.074*
C13 0.35181 (15) 0.4668 (2) 0.43141 (10) 0.0464 (5)
C14 0.3050 (2) 0.5866 (3) 0.37677 (16) 0.0643 (6)
C15 0.71094 (14) 0.1945 (2) 0.36813 (10) 0.0399 (4)
C16 0.76182 (16) 0.1141 (2) 0.43050 (12) 0.0530 (5)
H16 0.7234 0.0378 0.4492 0.064*
C17 0.87118 (17) 0.1486 (3) 0.46506 (13) 0.0607 (6)
H17 0.9056 0.0944 0.5072 0.073*
C18 0.93031 (17) 0.2605 (3) 0.43883 (13) 0.0575 (5)
C19 0.87634 (17) 0.3392 (3) 0.37669 (13) 0.0633 (6)
H19 0.9143 0.4163 0.3583 0.076*
C20 0.76747 (16) 0.3071 (2) 0.34082 (12) 0.0539 (5)
H20 0.7331 0.3613 0.2987 0.065*
C21 1.0505 (2) 0.2947 (4) 0.47617 (17) 0.0897 (9)
H21A 1.0534 0.3242 0.5276 0.135*
H21B 1.0784 0.3741 0.4495 0.135*
H21C 1.0959 0.2075 0.4751 0.135*
N1 0.40296 (12) 0.14475 (16) 0.28185 (9) 0.0387 (3)
N2 0.48102 (13) 0.38993 (16) 0.35183 (8) 0.0393 (3)
O1 0.53434 (10) 0.33484 (13) 0.22624 (7) 0.0420 (3)
O2 0.60148 (10) 0.15191 (13) 0.33463 (7) 0.0444 (3)
P1 0.50634 (4) 0.26305 (4) 0.29312 (2) 0.03385 (15)
H1 0.4230 (17) 0.0477 (18) 0.2912 (12) 0.062 (6)*
H21 0.4928 (17) 0.4862 (18) 0.3421 (12) 0.061 (6)*
H14C 0.267 (3) 0.548 (3) 0.3309 (19) 0.104 (10)*
H14B 0.249 (3) 0.645 (4) 0.3955 (18) 0.123 (11)*
H14A 0.363 (3) 0.660 (3) 0.3641 (17) 0.105 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0343 (9) 0.0320 (9) 0.0410 (9) −0.0007 (7) 0.0063 (7) −0.0066 (7)
C2 0.0451 (11) 0.0446 (10) 0.0496 (11) 0.0036 (8) 0.0099 (9) 0.0016 (8)
C3 0.0508 (12) 0.0606 (13) 0.0673 (13) 0.0155 (10) 0.0046 (10) 0.0094 (11)
C4 0.0381 (11) 0.0708 (15) 0.0969 (19) 0.0124 (10) 0.0085 (12) 0.0035 (13)
C5 0.0429 (12) 0.0608 (13) 0.0875 (16) −0.0049 (10) 0.0255 (11) −0.0025 (12)
C6 0.0434 (10) 0.0400 (10) 0.0524 (11) −0.0032 (8) 0.0142 (8) −0.0028 (8)
C7 0.0634 (13) 0.0583 (13) 0.0724 (14) −0.0046 (11) 0.0272 (11) 0.0159 (11)
C8 0.0440 (10) 0.0391 (9) 0.0351 (9) −0.0131 (7) 0.0074 (7) −0.0069 (7)
C9 0.0580 (12) 0.0516 (12) 0.0446 (11) −0.0084 (9) 0.0072 (9) 0.0031 (9)
C10 0.0774 (16) 0.0723 (15) 0.0447 (12) −0.0274 (13) 0.0066 (11) 0.0083 (10)
C11 0.0781 (16) 0.0866 (17) 0.0469 (12) −0.0379 (14) 0.0255 (11) −0.0122 (12)
C12 0.0569 (12) 0.0702 (15) 0.0627 (13) −0.0206 (11) 0.0254 (10) −0.0215 (12)
C13 0.0456 (10) 0.0465 (11) 0.0488 (10) −0.0140 (8) 0.0137 (8) −0.0136 (8)
C14 0.0639 (15) 0.0566 (14) 0.0739 (16) 0.0124 (12) 0.0176 (13) −0.0040 (12)
C15 0.0335 (9) 0.0392 (10) 0.0470 (10) 0.0002 (7) 0.0080 (8) −0.0031 (8)
C16 0.0428 (11) 0.0542 (12) 0.0610 (12) 0.0002 (9) 0.0085 (9) 0.0113 (10)
C17 0.0464 (12) 0.0712 (14) 0.0597 (13) 0.0073 (10) −0.0009 (10) 0.0060 (11)
C18 0.0394 (11) 0.0678 (14) 0.0626 (13) −0.0017 (9) 0.0039 (10) −0.0080 (11)
C19 0.0461 (12) 0.0682 (14) 0.0757 (15) −0.0163 (10) 0.0125 (11) 0.0062 (12)
C20 0.0420 (11) 0.0583 (12) 0.0592 (12) −0.0062 (9) 0.0052 (9) 0.0133 (10)
C21 0.0464 (14) 0.108 (2) 0.105 (2) −0.0113 (14) −0.0079 (14) −0.0065 (18)
N1 0.0352 (8) 0.0277 (7) 0.0527 (9) 0.0005 (6) 0.0075 (6) −0.0013 (6)
N2 0.0519 (9) 0.0282 (8) 0.0399 (8) −0.0047 (6) 0.0144 (7) −0.0016 (6)
O1 0.0477 (7) 0.0385 (7) 0.0428 (7) −0.0021 (5) 0.0159 (5) 0.0007 (5)
O2 0.0335 (6) 0.0342 (6) 0.0627 (8) −0.0016 (5) 0.0025 (6) 0.0045 (6)
P1 0.0341 (2) 0.0287 (2) 0.0391 (3) −0.00105 (17) 0.00834 (18) −0.00115 (17)

Geometric parameters (Å, °)

C1—C2 1.383 (3) C13—C14 1.494 (3)
C1—C6 1.399 (2) C14—H14C 0.93 (3)
C1—N1 1.425 (2) C14—H14B 0.97 (3)
C2—C3 1.381 (3) C14—H14A 1.02 (3)
C2—H2 0.93 C15—C20 1.369 (3)
C3—C4 1.372 (3) C15—C16 1.377 (3)
C3—H3 0.93 C15—O2 1.400 (2)
C4—C5 1.377 (3) C16—C17 1.386 (3)
C4—H4 0.93 C16—H16 0.93
C5—C6 1.388 (3) C17—C18 1.374 (3)
C5—H5 0.93 C17—H17 0.93
C6—C7 1.500 (3) C18—C19 1.377 (3)
C7—H7A 0.96 C18—C21 1.513 (3)
C7—H7B 0.96 C19—C20 1.382 (3)
C7—H7C 0.96 C19—H19 0.93
C8—C9 1.382 (3) C20—H20 0.93
C8—C13 1.393 (3) C21—H21A 0.96
C8—N2 1.432 (2) C21—H21B 0.96
C9—C10 1.388 (3) C21—H21C 0.96
C9—H9 0.93 N1—P1 1.6268 (15)
C10—C11 1.369 (4) N1—H1 0.911 (15)
C10—H10 0.93 N2—P1 1.6279 (15)
C11—C12 1.375 (3) N2—H21 0.899 (15)
C11—H11 0.93 O1—P1 1.4692 (12)
C12—C13 1.390 (3) O2—P1 1.5964 (13)
C12—H12 0.93
C2—C1—C6 120.19 (16) C13—C14—H14B 111.0 (19)
C2—C1—N1 120.32 (15) H14C—C14—H14B 105 (3)
C6—C1—N1 119.48 (16) C13—C14—H14A 114.9 (17)
C3—C2—C1 120.67 (18) H14C—C14—H14A 106 (2)
C3—C2—H2 119.7 H14B—C14—H14A 107 (2)
C1—C2—H2 119.7 C20—C15—C16 120.46 (17)
C4—C3—C2 119.9 (2) C20—C15—O2 123.22 (17)
C4—C3—H3 120.1 C16—C15—O2 116.30 (16)
C2—C3—H3 120.1 C15—C16—C17 119.01 (19)
C3—C4—C5 119.4 (2) C15—C16—H16 120.5
C3—C4—H4 120.3 C17—C16—H16 120.5
C5—C4—H4 120.3 C18—C17—C16 121.9 (2)
C4—C5—C6 122.25 (19) C18—C17—H17 119
C4—C5—H5 118.9 C16—C17—H17 119
C6—C5—H5 118.9 C17—C18—C19 117.39 (19)
C5—C6—C1 117.52 (18) C17—C18—C21 121.3 (2)
C5—C6—C7 121.31 (18) C19—C18—C21 121.3 (2)
C1—C6—C7 121.15 (17) C18—C19—C20 122.0 (2)
C6—C7—H7A 109.5 C18—C19—H19 119
C6—C7—H7B 109.5 C20—C19—H19 119
H7A—C7—H7B 109.5 C15—C20—C19 119.2 (2)
C6—C7—H7C 109.5 C15—C20—H20 120.4
H7A—C7—H7C 109.5 C19—C20—H20 120.4
H7B—C7—H7C 109.5 C18—C21—H21A 109.5
C9—C8—C13 120.81 (18) C18—C21—H21B 109.5
C9—C8—N2 120.30 (17) H21A—C21—H21B 109.5
C13—C8—N2 118.87 (16) C18—C21—H21C 109.5
C8—C9—C10 120.1 (2) H21A—C21—H21C 109.5
C8—C9—H9 119.9 H21B—C21—H21C 109.5
C10—C9—H9 119.9 C1—N1—P1 123.77 (12)
C11—C10—C9 119.7 (2) C1—N1—H1 120.6 (13)
C11—C10—H10 120.1 P1—N1—H1 115.4 (13)
C9—C10—H10 120.1 C8—N2—P1 127.71 (12)
C10—C11—C12 119.9 (2) C8—N2—H21 113.0 (14)
C10—C11—H11 120.1 P1—N2—H21 119.2 (14)
C12—C11—H11 120.1 C15—O2—P1 124.67 (11)
C11—C12—C13 121.9 (2) O1—P1—O2 113.30 (7)
C11—C12—H12 119 O1—P1—N1 118.95 (8)
C13—C12—H12 119 O2—P1—N1 96.87 (7)
C12—C13—C8 117.46 (19) O1—P1—N2 109.57 (7)
C12—C13—C14 120.5 (2) O2—P1—N2 110.16 (8)
C8—C13—C14 122.06 (18) N1—P1—N2 107.23 (7)
C13—C14—H14C 112.0 (18)
C6—C1—C2—C3 −1.1 (3) C15—C16—C17—C18 −0.1 (3)
N1—C1—C2—C3 179.94 (17) C16—C17—C18—C19 0.6 (3)
C1—C2—C3—C4 −0.7 (3) C16—C17—C18—C21 −178.7 (2)
C2—C3—C4—C5 1.3 (4) C17—C18—C19—C20 −0.8 (3)
C3—C4—C5—C6 −0.2 (4) C21—C18—C19—C20 178.5 (2)
C4—C5—C6—C1 −1.5 (3) C16—C15—C20—C19 0.0 (3)
C4—C5—C6—C7 176.6 (2) O2—C15—C20—C19 −178.57 (19)
C2—C1—C6—C5 2.1 (3) C18—C19—C20—C15 0.5 (3)
N1—C1—C6—C5 −178.90 (17) C2—C1—N1—P1 39.1 (2)
C2—C1—C6—C7 −175.95 (18) C6—C1—N1—P1 −139.85 (15)
N1—C1—C6—C7 3.0 (3) C9—C8—N2—P1 45.5 (2)
C13—C8—C9—C10 −0.6 (3) C13—C8—N2—P1 −135.66 (15)
N2—C8—C9—C10 178.22 (17) C20—C15—O2—P1 −33.5 (2)
C8—C9—C10—C11 −1.8 (3) C16—C15—O2—P1 147.94 (14)
C9—C10—C11—C12 2.0 (3) C15—O2—P1—O1 62.76 (15)
C10—C11—C12—C13 0.2 (3) C15—O2—P1—N1 −171.60 (13)
C11—C12—C13—C8 −2.4 (3) C15—O2—P1—N2 −60.38 (15)
C11—C12—C13—C14 177.9 (2) C1—N1—P1—O1 −75.73 (15)
C9—C8—C13—C12 2.6 (3) C1—N1—P1—O2 162.81 (14)
N2—C8—C13—C12 −176.18 (16) C1—N1—P1—N2 49.18 (16)
C9—C8—C13—C14 −177.7 (2) C8—N2—P1—O1 169.91 (14)
N2—C8—C13—C14 3.5 (3) C8—N2—P1—O2 −64.80 (17)
C20—C15—C16—C17 −0.2 (3) C8—N2—P1—N1 39.51 (17)
O2—C15—C16—C17 178.44 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.91 (2) 2.02 (2) 2.8963 (19) 161 (2)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2779).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  3. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  4. Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Pourayoubi, M., Ghadimi, S., Ebrahimi Valmoozi, A. A. & Banan, A. R. (2009). Acta Cryst. E65, o1973. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023512/ng2779sup1.cif

e-66-o1755-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023512/ng2779Isup2.hkl

e-66-o1755-Isup2.hkl (211.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES