Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 5;66(Pt 7):o1535. doi: 10.1107/S1600536810020386

2,4-Dichloro-7,8-dimethyl­quinoline

R Subashini a, F Nawaz Khan a, T Rajashekar Reddy a, Venkatesha R Hathwar b, Mehmet Akkurt c,*
PMCID: PMC3006798  PMID: 21587784

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C11H9Cl2N, both of which are essentially planar [maximum deviations of 0.072 (5) and 0.072 (7) Å]. In the crystal structure, weak π–π stacking inter­actions [centroid-centroid distances = 3.791 (3) Å and 3.855 (3) Å] link pairs of mol­ecules.

Related literature

For the properties and applications of related compounds, see: Biavatti et al. (2002); Fournet et al. (1981); McCormick et al. (1996); Towers et al. (1981); Ziegler & Gelfert (1959). For similar crystal structures, see: Subashini et al. (2009); Somvanshi et al. (2008).graphic file with name e-66-o1535-scheme1.jpg

Experimental

Crystal data

  • C11H9Cl2N

  • M r = 226.09

  • Orthorhombic, Inline graphic

  • a = 20.3054 (9) Å

  • b = 3.9992 (2) Å

  • c = 25.5743 (11) Å

  • V = 2076.77 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.15 mm

Data collection

  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) T min = 0.845, T max = 0.918

  • 19807 measured reflections

  • 4009 independent reflections

  • 2599 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.119

  • S = 0.94

  • 4009 reflections

  • 257 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 1943 Friedel pairs

  • Flack parameter: 0.15 (10)

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020386/vm2029sup1.cif

e-66-o1535-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020386/vm2029Isup2.hkl

e-66-o1535-Isup2.hkl (196.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

A wide range of medicinal properties have already been identified for compounds containing the quinoline ring system including antiprotozoal (Fournet et al., 1981), antibacterial (Towers et al., 1981), antifungal (Biavatti et al., 2002) and antiviral activities (McCormick et al., 1996). Reaction of aniline with malonic acid in an excess of phosphorus oxychloride at reflux to give 2,4-dichloroquinoline was first reported by Ziegler & Gelfert (1959). A similar derivative of quinoline was synthesized from the mixture of p-toluidine and malonic acid in a one-pot reaction from an aryl amine, malonic acid and phosphorous oxychloride and its cytotoxicity has been reported (Somvanshi et al., 2008). Another derivative of quinoline prepared from p-anisidine and phosphorous oxychloride has been reported (Subashini et al., 2009). In continuous of our work, the crystal structure of another derivative is reported in this paper.

The molecules A (Cl1/Cl2/N1/C1–C11) and B (Cl3/Cl4/N2/C12–C22) in the asymmetric unit of the title compound (I) are shown in Fig. 1. In both molecules A and B, the bond lengths and angles are comparable with those of similar structures (Somvanshi et al., 2008; Subashini et al., 2009). The molecules A and B are essentially planar, except the H atoms of their methyl groups, with maximum deviations of 0.072 (5)Å for C10 and 0.072 (7)Å for C21, respectively. Fitting of the non-H atoms of molecules A and B results in an r.m.s. fit of 0.063 Å). The least-squares plane through molecule A makes a dihedral angle of 56.72 (14)° with that of molecule B.

Weak intramolecular C—H···Cl and C—H···N interactions contribute to the stabilization of the molecular conformation of (I) (Table 1). In the crystal structure, weak π-π stacking interactions [Cg1···Cg2(x, 1 + y, z) = 3.791 (3) Å and Cg4···Cg5 (x, 1 + y, z) = 3.855 (3) Å; where Cg1, Cg2, Cg4 and Cg5 are centroids of the N1/C1–C4/C9, C4–C9, N2/C12–C15/C20 and C15–C20 rings, respectively] link pairs of molecules. In the structure, no classical hydrogen bonds are observed. Fig. 2 shows the crystal packing down the b axis.

Experimental

2,3-Dimethylaniline (10 mmol) and malonic acid (10 mmol) were heated under reflux in phosphorus oxychloride (30 ml), with stirring, for 5 h. The mixture was cooled, poured into crushed ice with vigorous stirring and then made alkaline with 5 M sodium hydroxide. Filtration gave the crude product as a brown solid. Column chromatography (95:5 hexane–EtOAc) yielded the pure 2,4-dichloro-7,8-dimethylquinoline. White needles of the synthesized compound have been grown from DMSO.

Refinement

H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H and refined as a riding method, with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the two molecules in the same asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular packing of (I) showing π-π stacking interactions (dashed lines) between the adjacent molecules down b axis. H atoms are omitted for clarity.

Crystal data

C11H9Cl2N F(000) = 928
Mr = 226.09 Dx = 1.446 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 895 reflections
a = 20.3054 (9) Å θ = 1.8–24.7°
b = 3.9992 (2) Å µ = 0.58 mm1
c = 25.5743 (11) Å T = 295 K
V = 2076.77 (17) Å3 Needle, colourless
Z = 8 0.30 × 0.24 × 0.15 mm

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer 4009 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2599 reflections with I > 2σ(I)
graphite Rint = 0.048
ω scans θmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) h = −25→25
Tmin = 0.845, Tmax = 0.918 k = −4→4
19807 measured reflections l = −31→31

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0652P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max < 0.001
4009 reflections Δρmax = 0.32 e Å3
257 parameters Δρmin = −0.19 e Å3
1 restraint Absolute structure: Flack (1983), 1943 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.15 (10)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.68230 (6) 0.6442 (5) 0.97181 (6) 0.0916 (6)
Cl2 0.50757 (6) 0.7463 (3) 0.81738 (5) 0.0709 (4)
N1 0.56446 (17) 0.4177 (12) 0.97981 (17) 0.0530 (12)
C1 0.6040 (3) 0.5681 (15) 0.9491 (2) 0.0630 (19)
C2 0.5891 (2) 0.6763 (11) 0.89752 (18) 0.0550 (16)
C3 0.5272 (2) 0.6141 (12) 0.88079 (17) 0.0490 (14)
C4 0.4813 (3) 0.4506 (11) 0.9111 (3) 0.0510 (19)
C5 0.4158 (2) 0.3859 (13) 0.8958 (2) 0.0593 (17)
C6 0.3744 (2) 0.2192 (11) 0.9295 (2) 0.0647 (17)
C7 0.3943 (2) 0.1131 (13) 0.9795 (2) 0.0623 (19)
C8 0.4577 (2) 0.1780 (10) 0.99705 (18) 0.0553 (17)
C9 0.50171 (19) 0.3483 (10) 0.96177 (17) 0.0477 (14)
C10 0.3437 (3) −0.0425 (13) 1.0129 (2) 0.0640 (19)
C11 0.4804 (3) 0.0815 (14) 1.0504 (2) 0.074 (2)
Cl3 0.56576 (6) 1.1324 (5) 0.69164 (6) 0.0964 (6)
Cl4 0.73974 (6) 1.2634 (3) 0.84687 (5) 0.0694 (4)
N2 0.6857 (2) 0.9027 (12) 0.68457 (18) 0.0627 (17)
C12 0.6456 (3) 1.0586 (13) 0.7160 (2) 0.0540 (17)
C13 0.6582 (2) 1.1805 (11) 0.76636 (19) 0.0553 (16)
C14 0.7208 (2) 1.1269 (12) 0.78476 (17) 0.0500 (16)
C15 0.7689 (2) 0.9656 (10) 0.7534 (3) 0.0420 (18)
C16 0.8335 (3) 0.8998 (14) 0.7678 (2) 0.0620 (17)
C17 0.8766 (2) 0.7485 (11) 0.73560 (19) 0.0590 (17)
C18 0.8568 (2) 0.6444 (12) 0.6858 (2) 0.0610 (19)
C19 0.7928 (2) 0.6889 (10) 0.66826 (18) 0.0567 (17)
C20 0.74761 (19) 0.8565 (11) 0.70266 (17) 0.0507 (16)
C21 0.9046 (4) 0.4700 (17) 0.6447 (4) 0.112 (4)
C22 0.7674 (3) 0.5740 (13) 0.6163 (2) 0.0650 (19)
H2 0.62010 0.78320 0.87660 0.0660*
H5 0.40070 0.45540 0.86320 0.0710*
H6 0.33150 0.17480 0.91870 0.0780*
H10A 0.32250 0.12660 1.03360 0.0960*
H10B 0.36400 −0.20380 1.03550 0.0960*
H10C 0.31150 −0.15180 0.99130 0.0960*
H11A 0.46530 0.24420 1.07530 0.1120*
H11B 0.52760 0.07210 1.05100 0.1120*
H11C 0.46280 −0.13390 1.05930 0.1120*
H13 0.62630 1.29030 0.78600 0.0660*
H16 0.84760 0.96260 0.80100 0.0740*
H17 0.91970 0.71310 0.74650 0.0700*
H21A 0.90020 0.57790 0.61130 0.1670*
H21B 0.89310 0.23810 0.64140 0.1670*
H21C 0.94930 0.48880 0.65650 0.1670*
H22A 0.79460 0.66330 0.58900 0.0970*
H22B 0.72290 0.65090 0.61180 0.0970*
H22C 0.76820 0.33420 0.61490 0.0970*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0611 (8) 0.1339 (13) 0.0798 (10) −0.0212 (8) −0.0161 (7) 0.0013 (12)
Cl2 0.0827 (8) 0.0806 (7) 0.0495 (6) 0.0103 (6) −0.0061 (6) 0.0020 (6)
N1 0.047 (2) 0.068 (2) 0.044 (2) 0.004 (2) −0.0064 (19) −0.008 (2)
C1 0.048 (3) 0.069 (3) 0.072 (4) −0.003 (3) −0.001 (3) −0.013 (3)
C2 0.062 (3) 0.056 (3) 0.047 (2) −0.002 (2) 0.005 (2) −0.007 (2)
C3 0.060 (3) 0.048 (2) 0.039 (2) 0.006 (2) 0.000 (2) −0.005 (2)
C4 0.052 (3) 0.041 (3) 0.060 (4) 0.009 (2) −0.008 (3) −0.020 (2)
C5 0.045 (3) 0.075 (3) 0.058 (3) 0.010 (3) −0.003 (2) −0.019 (3)
C6 0.046 (3) 0.067 (3) 0.081 (3) 0.007 (2) −0.004 (2) −0.016 (3)
C7 0.054 (3) 0.054 (3) 0.079 (4) 0.005 (3) 0.012 (3) −0.016 (3)
C8 0.066 (3) 0.048 (3) 0.052 (3) 0.004 (2) 0.008 (2) −0.012 (2)
C9 0.055 (2) 0.038 (2) 0.050 (3) 0.001 (2) 0.011 (2) −0.012 (2)
C10 0.062 (4) 0.062 (3) 0.068 (3) −0.004 (2) 0.018 (3) −0.018 (3)
C11 0.088 (4) 0.067 (3) 0.068 (4) 0.002 (3) −0.001 (3) −0.004 (3)
Cl3 0.0610 (8) 0.1433 (13) 0.0848 (10) 0.0298 (9) −0.0193 (7) −0.0122 (13)
Cl4 0.0783 (7) 0.0777 (7) 0.0523 (6) −0.0045 (6) −0.0028 (6) −0.0053 (6)
N2 0.067 (3) 0.067 (3) 0.054 (3) 0.006 (2) −0.002 (2) −0.002 (3)
C12 0.046 (3) 0.073 (3) 0.043 (3) 0.005 (2) −0.002 (2) −0.006 (3)
C13 0.042 (2) 0.061 (3) 0.063 (3) 0.008 (2) 0.005 (2) 0.002 (2)
C14 0.058 (3) 0.047 (3) 0.045 (2) −0.003 (2) 0.006 (2) 0.002 (2)
C15 0.034 (3) 0.039 (2) 0.053 (4) 0.0013 (16) 0.004 (3) 0.0138 (19)
C16 0.070 (3) 0.057 (3) 0.059 (3) −0.014 (3) −0.009 (3) 0.004 (3)
C17 0.050 (3) 0.060 (3) 0.067 (3) −0.001 (2) −0.004 (2) 0.006 (3)
C18 0.060 (3) 0.043 (3) 0.080 (4) −0.001 (2) 0.016 (3) 0.018 (3)
C19 0.063 (3) 0.049 (3) 0.058 (3) −0.008 (2) 0.007 (2) 0.011 (2)
C20 0.047 (2) 0.054 (3) 0.051 (3) 0.000 (2) 0.009 (2) 0.007 (2)
C21 0.084 (5) 0.086 (5) 0.166 (8) 0.018 (3) 0.056 (5) 0.007 (4)
C22 0.084 (4) 0.072 (3) 0.039 (3) 0.016 (3) 0.007 (3) −0.002 (3)

Geometric parameters (Å, °)

Cl1—C1 1.720 (6) C10—H10C 0.9600
Cl2—C3 1.752 (5) C11—H11B 0.9600
Cl3—C12 1.762 (6) C11—H11C 0.9600
Cl4—C14 1.723 (5) C11—H11A 0.9600
N1—C9 1.383 (5) C12—C13 1.401 (7)
N1—C1 1.274 (7) C13—C14 1.372 (6)
N2—C20 1.352 (6) C14—C15 1.419 (7)
N2—C12 1.303 (7) C15—C16 1.388 (7)
C1—C2 1.421 (7) C15—C20 1.436 (8)
C2—C3 1.351 (6) C16—C17 1.345 (7)
C3—C4 1.377 (8) C17—C18 1.399 (7)
C4—C5 1.410 (7) C18—C19 1.386 (6)
C4—C9 1.421 (8) C18—C21 1.592 (10)
C5—C6 1.376 (7) C19—C20 1.437 (6)
C6—C7 1.407 (7) C19—C22 1.498 (7)
C7—C10 1.474 (7) C13—H13 0.9300
C7—C8 1.388 (6) C16—H16 0.9300
C8—C11 1.491 (7) C17—H17 0.9300
C8—C9 1.441 (6) C21—H21A 0.9600
C2—H2 0.9300 C21—H21B 0.9600
C5—H5 0.9300 C21—H21C 0.9600
C6—H6 0.9300 C22—H22A 0.9600
C10—H10A 0.9600 C22—H22B 0.9600
C10—H10B 0.9600 C22—H22C 0.9600
Cl1···H22Ai 3.0300 H5···H16iii 2.5500
Cl2···H5 2.7300 H6···H10C 2.3100
Cl2···H13ii 3.1300 H6···Cl4iii 3.1500
Cl2···H17iii 3.1400 H10A···C22viii 3.0400
Cl3···H21Civ 2.9500 H10A···H22Bviii 2.3800
Cl4···H6v 3.1500 H10B···C11 2.6500
Cl4···H16 2.7600 H10B···H11C 2.1200
N1···H11B 2.4100 H10C···H6 2.3100
N2···H22B 2.2500 H11A···H11Cvi 2.5200
C3···C4vi 3.558 (7) H11B···N1 2.4100
C4···C3ii 3.558 (7) H11C···H11Aii 2.5200
C5···C6vi 3.543 (7) H11C···C10 2.7200
C6···C5ii 3.543 (7) H11C···H10B 2.1200
C8···C9ii 3.553 (6) H13···Cl2vi 3.1300
C9···C8vi 3.553 (6) H16···Cl4 2.7600
C14···C15vi 3.584 (6) H16···H5v 2.5500
C15···C14ii 3.584 (6) H17···H21C 2.5400
C18···C21vi 3.598 (9) H17···Cl2v 3.1400
C19···C20ii 3.563 (6) H21A···C22 2.7000
C20···C19vi 3.563 (6) H21A···H22A 2.2400
C21···C18ii 3.598 (9) H21B···C18ii 2.7300
C10···H11C 2.7200 H21B···C19ii 3.0700
C11···H10B 2.6500 H21B···C21ii 3.0800
C18···H21Bvi 2.7300 H21B···C22 2.9500
C19···H21Bvi 3.0700 H21C···H17 2.5400
C19···H22Cvi 2.9600 H21C···Cl3ix 2.9500
C20···H22Cvi 2.9800 H22A···C21 2.7600
C21···H21Bvi 3.0800 H22A···H21A 2.2400
C21···H22C 2.9200 H22A···Cl1x 3.0300
C21···H22A 2.7600 H22B···N2 2.2500
C22···H22Cvi 3.0400 H22B···H10Avii 2.3800
C22···H10Avii 3.0400 H22C···C19ii 2.9600
C22···H21B 2.9500 H22C···C20ii 2.9800
C22···H21A 2.7000 H22C···C21 2.9200
H5···Cl2 2.7300 H22C···C22ii 3.0400
C1—N1—C9 118.0 (4) H11A—C11—H11B 110.00
C12—N2—C20 115.8 (5) Cl3—C12—N2 115.9 (4)
Cl1—C1—N1 117.3 (4) Cl3—C12—C13 115.8 (4)
N1—C1—C2 125.6 (5) N2—C12—C13 128.3 (5)
Cl1—C1—C2 117.2 (4) C12—C13—C14 115.5 (4)
C1—C2—C3 115.9 (4) Cl4—C14—C13 118.3 (3)
Cl2—C3—C2 116.7 (3) Cl4—C14—C15 120.8 (4)
C2—C3—C4 122.6 (5) C13—C14—C15 121.0 (4)
Cl2—C3—C4 120.7 (4) C14—C15—C16 125.9 (6)
C3—C4—C5 124.7 (6) C14—C15—C20 116.2 (4)
C5—C4—C9 118.4 (5) C16—C15—C20 117.8 (5)
C3—C4—C9 116.9 (5) C15—C16—C17 122.5 (5)
C4—C5—C6 119.4 (5) C16—C17—C18 120.3 (4)
C5—C6—C7 122.7 (4) C17—C18—C19 121.7 (4)
C6—C7—C8 120.3 (4) C17—C18—C21 123.8 (5)
C6—C7—C10 117.0 (4) C19—C18—C21 114.5 (5)
C8—C7—C10 122.6 (5) C18—C19—C20 117.4 (4)
C7—C8—C9 117.5 (4) C18—C19—C22 124.8 (4)
C7—C8—C11 122.3 (4) C20—C19—C22 117.8 (4)
C9—C8—C11 120.2 (4) N2—C20—C15 123.2 (4)
N1—C9—C8 117.2 (4) N2—C20—C19 116.6 (4)
C4—C9—C8 121.8 (4) C15—C20—C19 120.2 (4)
N1—C9—C4 121.0 (4) C12—C13—H13 122.00
C3—C2—H2 122.00 C14—C13—H13 122.00
C1—C2—H2 122.00 C15—C16—H16 119.00
C4—C5—H5 120.00 C17—C16—H16 119.00
C6—C5—H5 120.00 C16—C17—H17 120.00
C7—C6—H6 119.00 C18—C17—H17 120.00
C5—C6—H6 119.00 C18—C21—H21A 109.00
C7—C10—H10A 110.00 C18—C21—H21B 109.00
C7—C10—H10B 109.00 C18—C21—H21C 110.00
H10A—C10—H10B 110.00 H21A—C21—H21B 109.00
H10A—C10—H10C 109.00 H21A—C21—H21C 109.00
C7—C10—H10C 109.00 H21B—C21—H21C 109.00
H10B—C10—H10C 109.00 C19—C22—H22A 109.00
C8—C11—H11B 109.00 C19—C22—H22B 109.00
C8—C11—H11C 110.00 C19—C22—H22C 110.00
C8—C11—H11A 109.00 H22A—C22—H22B 110.00
H11A—C11—H11C 109.00 H22A—C22—H22C 110.00
H11B—C11—H11C 109.00 H22B—C22—H22C 109.00
C9—N1—C1—Cl1 −178.7 (4) C7—C8—C9—C4 0.7 (6)
C9—N1—C1—C2 0.8 (8) C11—C8—C9—N1 −0.4 (6)
C1—N1—C9—C4 −1.9 (7) C11—C8—C9—C4 −178.6 (4)
C1—N1—C9—C8 180.0 (5) C7—C8—C9—N1 178.9 (4)
C20—N2—C12—Cl3 177.8 (4) Cl3—C12—C13—C14 −179.0 (4)
C20—N2—C12—C13 −0.9 (8) N2—C12—C13—C14 −0.3 (8)
C12—N2—C20—C15 0.8 (7) C12—C13—C14—Cl4 −178.9 (4)
C12—N2—C20—C19 −179.2 (4) C12—C13—C14—C15 1.5 (7)
N1—C1—C2—C3 0.7 (8) Cl4—C14—C15—C16 0.2 (7)
Cl1—C1—C2—C3 −179.8 (4) Cl4—C14—C15—C20 178.9 (3)
C1—C2—C3—Cl2 179.8 (4) C13—C14—C15—C16 179.7 (5)
C1—C2—C3—C4 −1.2 (7) C13—C14—C15—C20 −1.6 (7)
Cl2—C3—C4—C5 −2.4 (7) C14—C15—C16—C17 −179.3 (5)
Cl2—C3—C4—C9 179.2 (3) C20—C15—C16—C17 2.0 (8)
C2—C3—C4—C9 0.2 (7) C14—C15—C20—N2 0.3 (7)
C2—C3—C4—C5 178.7 (5) C14—C15—C20—C19 −179.6 (4)
C3—C4—C5—C6 179.9 (5) C16—C15—C20—N2 179.2 (5)
C9—C4—C5—C6 −1.7 (7) C16—C15—C20—C19 −0.8 (7)
C5—C4—C9—C8 0.9 (7) C15—C16—C17—C18 −1.3 (8)
C3—C4—C9—N1 1.4 (7) C16—C17—C18—C19 −0.8 (7)
C3—C4—C9—C8 179.4 (4) C16—C17—C18—C21 178.8 (5)
C5—C4—C9—N1 −177.2 (4) C17—C18—C19—C20 1.9 (7)
C4—C5—C6—C7 1.0 (7) C17—C18—C19—C22 −177.8 (4)
C5—C6—C7—C10 176.0 (5) C21—C18—C19—C20 −177.7 (4)
C5—C6—C7—C8 0.7 (7) C21—C18—C19—C22 2.6 (7)
C6—C7—C8—C9 −1.5 (7) C18—C19—C20—N2 178.9 (4)
C6—C7—C8—C11 177.8 (4) C18—C19—C20—C15 −1.1 (6)
C10—C7—C8—C9 −176.5 (4) C22—C19—C20—N2 −1.3 (6)
C10—C7—C8—C11 2.8 (7) C22—C19—C20—C15 178.7 (4)

Symmetry codes: (i) −x+3/2, y, z+1/2; (ii) x, y−1, z; (iii) x−1/2, −y+1, z; (iv) x−1/2, −y+2, z; (v) x+1/2, −y+1, z; (vi) x, y+1, z; (vii) −x+1, −y+1, z−1/2; (viii) −x+1, −y+1, z+1/2; (ix) x+1/2, −y+2, z; (x) −x+3/2, y, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···Cl2 0.93 2.73 3.094 (5) 104
C11—H11B···N1 0.96 2.41 2.825 (7) 106
C16—H16···Cl4 0.93 2.76 3.135 (6) 105
C22—H22B···N2 0.96 2.25 2.744 (7) 111

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2029).

References

  1. Biavatti, M. W., Vieira, P. C., da Silva, M. F. G. F., Fernandes, J. B., Victor, S. R., Pagnocca, F. C., Albuquerque, S., Caracelli, I. & Zukerman-Schpector, J. (2002). J. Braz. Chem. Soc.13, 66–70.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Fournet, A., Barrios, A. A., Munioz, V., Hocquemiller, R., Cave, A. & Bruneton, J. (1981). J. Antimicrob. Agents Chemother.37, 859–863. [DOI] [PMC free article] [PubMed]
  6. McCormick, J. L., McKee, T. C., Cardellina, J. H. & Boyd, M. R. (1996). J. Nat. Prod.59, 469–471. [DOI] [PubMed]
  7. Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Somvanshi, R. K., Subashini, R., Dhanasekaran, V., Arulprakash, G., Das, S. N. & Dey, S. (2008). J. Chem. Crystallogr.38, 381–386.
  10. Subashini, R., Hathwar, V. R., Manivel, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o370. [DOI] [PMC free article] [PubMed]
  11. Towers, G. H. N., Grahanm, E. A., Spenser, I. D. & Abramowski, Z. (1981). Planta Med.41, 136–142. [DOI] [PubMed]
  12. Ziegler, E. & Gelfert, K. (1959). Monatsh. Chem.90, 822–826.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020386/vm2029sup1.cif

e-66-o1535-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020386/vm2029Isup2.hkl

e-66-o1535-Isup2.hkl (196.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES