Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 23;66(Pt 7):o1757–o1758. doi: 10.1107/S1600536810023603

6-Nitro­benzimidazolium dihydrogen phosphate 6-nitro­benzimidazole solvate dihydrate

Zhi-Dong Shao a, Xiao Jiang a, Shao-Min Lan a, Wen-Jing Di a, Yun-Xiao Liang a,*
PMCID: PMC3006800  PMID: 21587973

Abstract

In the crystal structure of the title compound, C7H6N3O2 +·H2PO4 ·C7H5N3O2·2H2O, the components are connected through O—H⋯O, N—H⋯O and O—H⋯N hydrogen-bonding inter­actions, forming a sheet-like structure parallel to (101). Adjacent sheets are further linked together by strong O—H⋯O hydrogen-bonds involving the dihydrogenphosphate groups. π–π stacking inter­actions between neighbouring aromatic constituents [centroid–centroid distance 3.653 (3) Å] help to consolidate the crystal packing.

Related literature

For the preparation of inorganic metal phosphates, see: Benard et al. (1996); Jensen et al. (2000). For template synthesis of phosphates, see: Sameski et al. (1993); Lii et al. (1998). For phosphates with organic cations, see: Dakhlaoui et al. (2007).graphic file with name e-66-o1757-scheme1.jpg

Experimental

Crystal data

  • C7H6N3O2 +·H2PO4 ·C7H5N3O2·2H2O

  • M r = 460.31

  • Triclinic, Inline graphic

  • a = 9.4683 (19) Å

  • b = 9.990 (2) Å

  • c = 11.407 (2) Å

  • α = 90.73 (3)°

  • β = 107.10 (3)°

  • γ = 111.66 (3)°

  • V = 949.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.37 × 0.32 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.924, T max = 0.975

  • 9332 measured reflections

  • 4286 independent reflections

  • 2827 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.141

  • S = 1.14

  • 4286 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023603/wm2359sup1.cif

e-66-o1757-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023603/wm2359Isup2.hkl

e-66-o1757-Isup2.hkl (210KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

P1—O8 1.500 (2)
P1—O7 1.504 (2)
P1—O5 1.5591 (19)
P1—O6 1.562 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O7i 0.86 1.74 2.600 (2) 179
N2—H2A⋯O9 0.86 1.92 2.752 (2) 164
O6—H6A⋯N4ii 1.03 1.66 2.665 (2) 165
O5—H5A⋯O8iii 0.91 1.62 2.531 (2) 174
N5—H5B⋯O7 0.86 1.91 2.773 (2) 176
O9—H9A⋯O4iv 0.91 2.43 3.161 (2) 137
O9—H9B⋯O10v 0.85 1.92 2.754 (2) 165
O10—H10A⋯O8 0.91 1.85 2.740 (2) 169
O10—H10B⋯O9iii 0.84 2.16 2.917 (2) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the Ningbo Natural Science Foundation (grant Nos. 2007 A610022 and 2009 A610052) and the K. C. Wong Magna Fund in Ningbo University.

supplementary crystallographic information

Comment

Phosphates are of great interest because of their rich crystal chemistry and practical applications. Up to now, numerous inorganic metal phosphates have been reported (e.g. Benard et al., 1996; Jensen et al., 2000). Furthermore, various of these phosphates were synthesized by structure-orienting templates molecules, most ferquently amines (Sameski et al., 1993; Lii et al., 1998). Compared with these inorganic phosphates, the synthesis of non-metal phosphates was less well explored in the past decades (Dakhlaoui et al., 2007). Herein, we describe the synthesis and crystal structure of the title compound (I), a new non-metal phosphate with formula (C7H6N3O2)[H2PO4].(C7H5N3O2).2(H2O)

As shown in Fig.1, the structure of (I) consists of one (C7H6N3O2)+ cation, one [H2PO4]- anion, one (C7H5N3O2) solvent molecule and two H2O molecules, viz. one imidazole molecule is protonated, one imidazole molecule acts as an unprotonated solvent and a dihydrogenphosphate group is present. The O—P—O angles are in the range 105.62 (11)—115.73 (13) °. The P—O bond lengths to the terminal O atoms are 1.500 (2) and 1.504 (2) Å while the P—OH bond lengths are considerably longer with 1.5591 (19) and 1.562 (2) Å.

As is well known, hydrogen bonding interactions play an important role in the formation and stability of low-dimensional structures. In the present structure, the [(C7H6N3O2)]+ cations, [H2PO4]- anions, (C7H5N3O2) and H2O molecules are linked together through hydrogen bonds: N1—H1A···O7, N5—H5B···O7; N2—H2A···O9, O6—H6A···N4, O9—H4A···O4, O9—H9B···O10, O10—H10B···O3 (Fig. 2), forming a two-dimensional sheetlike structure parallel to (101). Adjacent sheets are further linked together by strong H-bonding interactions [O5—H5A···O8, O10—H10A···O8, O10—H10B···O9]. π—π stacking interactions between neighboring 6-nitrobenzimidazole molecules with an interplanar distance of 3.653 (3) Å help to consolidate a three-dimensional supramolecular network structure (Fig. 3).

Experimental

The title compound was obtained by the reaction of phosphoric acid, 6-nitrobenzimidazole and methanol/distilled water under room temperature. Typically, a mixture of phosphoric acid (0.2 ml), analytically pure 6-nitrobenzimidazole (0.164 g) and methanol/distilled water (10 ml/10 ml) was stirred at room temperature before it was filtered. The final filtrate was allowed to evaporate slowly at room temperature for 7 days to obtain yellow crystals.

Refinement

All H atoms associated with C atoms and N atoms were positioned geometrically and refined as riding model, with N–H = 0.86 Å, C–Haromatic type = 0.93 Å, Uiso(H) = 1.2Ueq(N), Uiso(H) = 1.2Ueq(C). Hydrogen atoms attached to O5, O6, O9 and O10 were discernible from difference Fourier maps. Their Uiso(H) values were fixed at 0.05 Å2 and their coordinates were not refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The layer structure of (C7H6N3O2)[H2PO4].(C7H5N3O2).2(H2O). Hydrogen bonds are indicated by dashed lines.

Fig. 3.

Fig. 3.

A packing diagram for the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C7H6N3O2+·H2PO4·C7H5N3O2·2H2O Z = 2
Mr = 460.31 F(000) = 476
Triclinic, P1 Dx = 1.610 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.4683 (19) Å Cell parameters from 6404 reflections
b = 9.990 (2) Å θ = 3.1–27.5°
c = 11.407 (2) Å µ = 0.22 mm1
α = 90.73 (3)° T = 293 K
β = 107.10 (3)° Platelet, yellow
γ = 111.66 (3)° 0.37 × 0.32 × 0.12 mm
V = 949.4 (3) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 4286 independent reflections
Radiation source: fine-focus sealed tube 2827 reflections with I > 2σ(I)
graphite Rint = 0.021
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −12→12
Tmin = 0.924, Tmax = 0.975 k = −12→12
9332 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.7024P] where P = (Fo2 + 2Fc2)/3
4286 reflections (Δ/σ)max = 0.005
280 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.46015 (8) 0.77962 (7) 0.52850 (6) 0.03448 (19)
O1 1.0279 (3) 0.6110 (3) 0.1175 (3) 0.0759 (8)
N1 0.4441 (3) 0.4733 (2) 0.2701 (2) 0.0392 (5)
H1A 0.4368 0.4114 0.3221 0.047*
C1 0.6946 (3) 0.4893 (3) 0.2258 (2) 0.0336 (5)
H1B 0.7181 0.4226 0.2760 0.040*
O2 0.9605 (3) 0.4445 (3) 0.2308 (2) 0.0638 (6)
N2 0.3902 (3) 0.6274 (2) 0.1497 (2) 0.0385 (5)
H2A 0.3417 0.6800 0.1120 0.046*
C2 0.5632 (3) 0.5227 (3) 0.2149 (2) 0.0313 (5)
O3 1.1886 (3) 1.0612 (3) 0.1237 (3) 0.0771 (8)
N3 0.9352 (3) 0.5369 (3) 0.1686 (2) 0.0447 (6)
C3 0.5284 (3) 0.6217 (3) 0.1383 (2) 0.0317 (5)
O4 1.0632 (3) 1.1997 (3) 0.1303 (3) 0.0762 (8)
N4 1.0431 (3) 0.7285 (2) 0.4511 (2) 0.0379 (5)
C4 0.6251 (3) 0.6929 (3) 0.0684 (2) 0.0376 (6)
H4B 0.6011 0.7583 0.0168 0.045*
O5 0.4699 (3) 0.8359 (2) 0.40310 (18) 0.0489 (5)
H5A 0.4918 0.9324 0.4014 0.050*
N5 0.8298 (3) 0.7543 (2) 0.47608 (19) 0.0375 (5)
H5B 0.7499 0.7403 0.5024 0.045*
C5 0.7570 (3) 0.6616 (3) 0.0796 (2) 0.0376 (6)
H5C 0.8259 0.7070 0.0355 0.045*
O6 0.2931 (2) 0.6510 (2) 0.4983 (2) 0.0471 (5)
H6A 0.1868 0.6647 0.4826 0.050*
N6 1.0976 (3) 1.0955 (3) 0.1613 (2) 0.0492 (6)
C6 0.7888 (3) 0.5623 (3) 0.1566 (2) 0.0347 (6)
O7 0.5822 (2) 0.7132 (2) 0.57244 (19) 0.0456 (5)
C7 0.3444 (3) 0.5381 (3) 0.2287 (3) 0.0425 (6)
H7B 0.2539 0.5234 0.2518 0.051*
O8 0.4731 (3) 0.8988 (2) 0.61749 (16) 0.0435 (5)
C8 1.0885 (3) 0.9142 (3) 0.3032 (2) 0.0367 (6)
H8B 1.1769 0.9045 0.2902 0.044*
O9 0.2853 (3) 0.8166 (3) 0.0119 (2) 0.0625 (6)
H9A 0.2025 0.8421 0.0112 0.050*
H9B 0.3401 0.8590 −0.0339 0.050*
C9 1.0114 (3) 0.8331 (3) 0.3813 (2) 0.0320 (5)
O10 0.4652 (3) 0.9058 (3) 0.8556 (2) 0.0754 (8)
H10A 0.4652 0.8914 0.7771 0.050*
H10B 0.5564 0.9646 0.9008 0.050*
C10 0.8767 (3) 0.8494 (3) 0.3970 (2) 0.0322 (5)
C11 0.8168 (3) 0.9477 (3) 0.3391 (2) 0.0389 (6)
H11A 0.7279 0.9578 0.3508 0.047*
C12 0.8942 (3) 1.0293 (3) 0.2638 (2) 0.0401 (6)
H12A 0.8592 1.0976 0.2244 0.048*
C13 1.0254 (3) 1.0093 (3) 0.2469 (2) 0.0364 (6)
C14 0.9324 (3) 0.6863 (3) 0.5052 (2) 0.0387 (6)
H14A 0.9253 0.6161 0.5585 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0389 (4) 0.0324 (4) 0.0420 (4) 0.0175 (3) 0.0220 (3) 0.0148 (3)
O1 0.0584 (15) 0.097 (2) 0.104 (2) 0.0408 (15) 0.0564 (15) 0.0469 (16)
N1 0.0364 (12) 0.0418 (13) 0.0442 (13) 0.0156 (10) 0.0187 (10) 0.0156 (10)
C1 0.0338 (13) 0.0333 (13) 0.0338 (13) 0.0131 (11) 0.0109 (10) 0.0113 (10)
O2 0.0587 (14) 0.0820 (17) 0.0750 (16) 0.0482 (14) 0.0283 (12) 0.0319 (13)
N2 0.0416 (13) 0.0427 (13) 0.0403 (12) 0.0253 (11) 0.0146 (10) 0.0109 (10)
C2 0.0294 (12) 0.0323 (13) 0.0327 (13) 0.0109 (10) 0.0120 (10) 0.0063 (10)
O3 0.0843 (18) 0.103 (2) 0.0893 (18) 0.0559 (17) 0.0655 (16) 0.0499 (16)
N3 0.0375 (13) 0.0537 (15) 0.0484 (14) 0.0204 (12) 0.0182 (11) 0.0078 (11)
C3 0.0347 (13) 0.0311 (13) 0.0282 (12) 0.0131 (11) 0.0084 (10) 0.0037 (9)
O4 0.0911 (19) 0.0713 (16) 0.101 (2) 0.0464 (15) 0.0594 (16) 0.0566 (15)
N4 0.0334 (12) 0.0393 (12) 0.0444 (13) 0.0156 (10) 0.0151 (10) 0.0105 (10)
C4 0.0433 (15) 0.0337 (13) 0.0330 (13) 0.0130 (12) 0.0107 (11) 0.0087 (10)
O5 0.0798 (15) 0.0367 (10) 0.0441 (11) 0.0264 (11) 0.0341 (11) 0.0164 (8)
N5 0.0325 (12) 0.0453 (13) 0.0373 (12) 0.0135 (10) 0.0172 (9) 0.0084 (9)
C5 0.0366 (14) 0.0419 (15) 0.0325 (13) 0.0109 (12) 0.0144 (11) 0.0086 (11)
O6 0.0365 (11) 0.0321 (10) 0.0764 (14) 0.0126 (8) 0.0240 (10) 0.0171 (9)
N6 0.0469 (14) 0.0591 (16) 0.0500 (15) 0.0219 (13) 0.0252 (12) 0.0194 (12)
C6 0.0289 (13) 0.0423 (14) 0.0322 (13) 0.0149 (11) 0.0078 (10) 0.0036 (10)
O7 0.0405 (11) 0.0490 (11) 0.0649 (13) 0.0249 (9) 0.0316 (10) 0.0280 (10)
C7 0.0383 (15) 0.0491 (16) 0.0470 (16) 0.0212 (13) 0.0182 (12) 0.0106 (12)
O8 0.0659 (13) 0.0377 (10) 0.0380 (10) 0.0233 (10) 0.0281 (9) 0.0151 (8)
C8 0.0297 (13) 0.0420 (15) 0.0407 (14) 0.0125 (11) 0.0166 (11) 0.0042 (11)
O9 0.0635 (14) 0.0811 (16) 0.0725 (15) 0.0465 (13) 0.0389 (12) 0.0432 (12)
C9 0.0291 (12) 0.0320 (13) 0.0331 (13) 0.0088 (10) 0.0116 (10) 0.0031 (10)
O10 0.0840 (19) 0.100 (2) 0.0467 (13) 0.0308 (16) 0.0344 (13) 0.0136 (13)
C10 0.0298 (13) 0.0349 (13) 0.0319 (13) 0.0097 (11) 0.0133 (10) 0.0055 (10)
C11 0.0332 (14) 0.0465 (15) 0.0410 (15) 0.0189 (12) 0.0133 (11) 0.0054 (11)
C12 0.0376 (14) 0.0437 (15) 0.0426 (15) 0.0183 (12) 0.0148 (12) 0.0108 (11)
C13 0.0357 (14) 0.0355 (14) 0.0360 (14) 0.0090 (11) 0.0150 (11) 0.0075 (10)
C14 0.0367 (14) 0.0356 (14) 0.0417 (15) 0.0111 (12) 0.0132 (11) 0.0093 (11)

Geometric parameters (Å, °)

P1—O8 1.500 (2) O5—H5A 0.9100
P1—O7 1.504 (2) N5—C14 1.348 (4)
P1—O5 1.5591 (19) N5—C10 1.364 (3)
P1—O6 1.562 (2) N5—H5B 0.8600
O1—N3 1.221 (3) C5—C6 1.391 (4)
N1—C7 1.315 (4) C5—H5C 0.9300
N1—C2 1.388 (3) O6—H6A 1.0287
N1—H1A 0.8600 N6—C13 1.463 (3)
C1—C2 1.376 (3) C7—H7B 0.9300
C1—C6 1.378 (3) C8—C13 1.371 (4)
C1—H1B 0.9300 C8—C9 1.396 (3)
O2—N3 1.221 (3) C8—H8B 0.9300
N2—C7 1.328 (3) O9—H9A 0.9074
N2—C3 1.374 (3) O9—H9B 0.8512
N2—H2A 0.8600 C9—C10 1.405 (3)
C2—C3 1.393 (3) O10—H10A 0.9048
O3—N6 1.215 (3) O10—H10B 0.8438
N3—C6 1.467 (3) C10—C11 1.389 (4)
C3—C4 1.394 (4) C11—C12 1.373 (4)
O4—N6 1.228 (3) C11—H11A 0.9300
N4—C14 1.310 (3) C12—C13 1.395 (4)
N4—C9 1.388 (3) C12—H12A 0.9300
C4—C5 1.367 (4) C14—H14A 0.9300
C4—H4B 0.9300
O8—P1—O7 115.73 (13) C6—C5—H5C 119.8
O8—P1—O5 109.95 (10) P1—O6—H6A 123.8
O7—P1—O5 108.51 (11) O3—N6—O4 122.7 (3)
O8—P1—O6 110.30 (12) O3—N6—C13 118.9 (3)
O7—P1—O6 105.62 (11) O4—N6—C13 118.4 (2)
O5—P1—O6 106.23 (13) C1—C6—C5 124.3 (2)
C7—N1—C2 107.7 (2) C1—C6—N3 117.6 (2)
C7—N1—H1A 126.2 C5—C6—N3 118.0 (2)
C2—N1—H1A 126.2 N1—C7—N2 110.9 (2)
C2—C1—C6 114.8 (2) N1—C7—H7B 124.5
C2—C1—H1B 122.6 N2—C7—H7B 124.5
C6—C1—H1B 122.6 C13—C8—C9 115.7 (2)
C7—N2—C3 108.4 (2) C13—C8—H8B 122.2
C7—N2—H2A 125.8 C9—C8—H8B 122.2
C3—N2—H2A 125.8 H9A—O9—H9B 116.1
C1—C2—N1 131.2 (2) N4—C9—C8 130.5 (2)
C1—C2—C3 122.0 (2) N4—C9—C10 109.0 (2)
N1—C2—C3 106.8 (2) C8—C9—C10 120.4 (2)
O1—N3—O2 122.8 (3) H10A—O10—H10B 110.3
O1—N3—C6 118.4 (2) N5—C10—C11 132.1 (2)
O2—N3—C6 118.8 (2) N5—C10—C9 105.6 (2)
N2—C3—C2 106.2 (2) C11—C10—C9 122.3 (2)
N2—C3—C4 131.9 (2) C12—C11—C10 117.3 (2)
C2—C3—C4 121.9 (2) C12—C11—H11A 121.4
C14—N4—C9 104.8 (2) C10—C11—H11A 121.4
C5—C4—C3 116.5 (2) C11—C12—C13 119.7 (3)
C5—C4—H4B 121.8 C11—C12—H12A 120.1
C3—C4—H4B 121.8 C13—C12—H12A 120.1
P1—O5—H5A 115.9 C8—C13—C12 124.6 (2)
C14—N5—C10 107.1 (2) C8—C13—N6 118.7 (2)
C14—N5—H5B 126.5 C12—C13—N6 116.7 (2)
C10—N5—H5B 126.5 N4—C14—N5 113.5 (2)
C4—C5—C6 120.4 (2) N4—C14—H14A 123.3
C4—C5—H5C 119.8 N5—C14—H14A 123.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O7i 0.86 1.74 2.600 (2) 179
N2—H2A···O9 0.86 1.92 2.752 (2) 164
O6—H6A···N4ii 1.03 1.66 2.665 (2) 165
O5—H5A···O8iii 0.91 1.62 2.531 (2) 174
N5—H5B···O7 0.86 1.91 2.773 (2) 176
O9—H9A···O3ii 0.91 2.59 3.269 (2) 132
O9—H9A···O4iv 0.91 2.43 3.161 (2) 137
O9—H9B···O10v 0.85 1.92 2.754 (2) 165
O10—H10A···O8 0.91 1.85 2.740 (2) 169
O10—H10B···O9iii 0.84 2.16 2.917 (2) 149
O10—H10B···O3vi 0.84 2.61 3.106 (2) 119

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x+1, −y+2, −z; (v) x, y, z−1; (vi) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2359).

References

  1. Benard, P., Brandel, V., Dacheux, N., Jaulmes, S., Launay, S., Lindecker, C., Genet, M. & Quarton, M. (1996). Chem. Mater.8, 181–188.
  2. Brandenburg, K. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Dakhlaoui, A., Gmigui, K. & Smiri, L. S. (2007). Acta Cryst. E63, o537–o539.
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Jensen, T. R., Hazell, R. G., Vosegaard, T. & Jakobsen, H. J. (2000). Inorg. Chem.39, 2026–2032. [DOI] [PubMed]
  6. Johnson, C. K. (1976). ORTEPII Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA.
  7. Lii, K.-H., Huang, Y.-F., Huang, C.-Y., Lin, H.-M., Jiang, Y.-C., Liao, F.-L. & Wang, S.-L. (1998). Chem. Mater.10, 2599–2609.
  8. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  10. Sameski, J. E., Brzezinski, L. J., Anderson, B., Didiuk, M., Manchanda, R., Crabtree, R. H., BrudVig, G. W. & Schulte, G. K. (1993). Inorg. Chem.32, 3265–3269.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023603/wm2359sup1.cif

e-66-o1757-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023603/wm2359Isup2.hkl

e-66-o1757-Isup2.hkl (210KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES