Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 18;66(Pt 7):m812. doi: 10.1107/S1600536810022646

Hexa­kis­(dimethyl sulfoxide-κO)thallium(III) trinitrate

Mohammad Ghadermazi a,*, Faranak Manteghi b
PMCID: PMC3006801  PMID: 21587730

Abstract

The title compound, [Tl(C2H6OS)6](NO3)3, consists of six dimethyl sulfoxide (DMSO) mol­ecules coordinated to a TlIII atom, which lies on a Inline graphic axis, and three nitrate anions (3. symmetry) to neutralize the charge. The coordination polyhedron around the TlIII atom is octa­hedral, defined by six O atoms of the DMSO mol­ecules. In the crystal structure, C—H⋯O hydrogen bonds are observed. One of the nitrate groups exhibits half-occupation.

Related literature

For general background to thallium(III) chemistry, see: Tóth & Gyõri (1994). For related structures, see: Aghabozorg, Ghadermazi et al. (2006); Aghabozorg, Ramezanipour et al. (2006); Ma et al. (2002); Notash et al. (2008).graphic file with name e-66-0m812-scheme1.jpg

Experimental

Crystal data

  • [Tl(C2H6OS)6](NO3)3

  • M r = 859.17

  • Trigonal, Inline graphic

  • a = 11.7207 (9) Å

  • c = 19.209 (3) Å

  • V = 2285.3 (4) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 5.78 mm−1

  • T = 100 K

  • 0.23 × 0.12 × 0.04 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.442, T max = 0.786

  • 9649 measured reflections

  • 1480 independent reflections

  • 1480 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.058

  • S = 0.99

  • 1480 reflections

  • 59 parameters

  • H-atom parameters constrained

  • Δρmax = 1.97 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022646/hy2321sup1.cif

e-66-0m812-sup1.cif (13.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022646/hy2321Isup2.hkl

e-66-0m812-Isup2.hkl (73.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1 0.96 2.42 3.311 (4) 154
C1—H1C⋯O2i 0.96 2.54 3.448 (11) 158
C2—H2A⋯O1ii 0.96 2.55 3.380 (6) 145
C2—H2B⋯O2 0.96 1.99 2.915 (10) 161
C2—H2C⋯O1 0.96 2.55 3.423 (6) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors gratefully acknowledge University of Kurdistan for financial support of this work.

supplementary crystallographic information

Comment

There are some reports on coordination of dimethyl sulfoxide (DMSO) as a neutral ligand to Tl(III), such as a triiodo complex [TlI3(DMSO)2] (Ma et al., 2002) and [Tl(dm4bt)2(NO3)(DMSO)] (dm4bt = 2,2'-dimethyl-4,4'-bithiazole) (Notash et al., 2008). Thallium(III) can be classified as a medium-soft metal ion in contrast to the other trivalent ions of group 13, aluminium(III), gallium(III) and indium(III), which are regarded as hard from their coordination properties (Tóth & Gyõri, 1994). The title compound has a coordination number of six around the metal (Figs. 1 and 2). However, the coordination numbers 4 to 9 are observed in different thallium(III) complexes (Aghabozorg, Ramezanipour et al., 2006). Compared with [Tl(dm4bt)2(NO3)(DMSO)] and [TlI3(DMSO)2] mentioned above, in which the bond lengths of Tl(III) to O atoms of DMSO are 2.644 (7) and 2.468 (6) Å, the title compound has shorter Tl—O bonds [2.223 (2)–2.224 (2) Å]. This can be attributed to the less hindrance around the Tl centre. Also, compared with [Tl2(pydcH)3(pydc)(H2O)2] (pydcH2 = pyridine-2,6-dicarboxylic acid) (Aghabozorg, Ramezanipour et al., 2006) and (pipzH2)[Tl2(pydc)2Cl4(H2O)2].4H2O (pipz = piperazine) (Aghabozorg, Ghadermazi et al., 2006), whose Tl—O bond lengths vary in the range of 2.680 (4)–3.122 (4) and 2.436 (5)–2.508 (5) Å, respectively, again the Tl—O bond lengths in the title compound are obviously shorter. As shown in Table 1, only C—H···O hydrogen bonds can be seen in the lattice. The shortest C—H···O bond is C2—H2B···O2 with the best angle.

Experimental

To a DMSO solution of Tl(NO3)3.3H2O (1 mmol, 443 mg) was added piperazinediium pyridine-2,6-dicarboxylate (3 mmol, 759 mg) prepared as literature (Aghabozorg, Ghadermazi et al., 2006). The total volume of solution was 40 ml. The colourless crystals suitable for crystallography were obtained after six months.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). There is a high positive residual density of 1.97 e Å-3 near the Tl1 atom (distance 0.76 Å) due to considerable absorption effects which could not be completely corrected.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (i) 1/3+x-y, -1/3+x, 2/3-z; (ii) 1-y, x-y, z; (iii) 4/3-x, 2/3-y, 2/3-z; (iv) 1-x+y, 1-x, z; (v) 1/3+y, 2/3-x+y, 2/3-z.]

Fig. 2.

Fig. 2.

Coordination polyhedron around the metal centre.

Crystal data

[Tl(C2H6OS)6](NO3)3 Dx = 1.873 Mg m3
Mr = 859.17 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3 Cell parameters from 1197 reflections
Hall symbol: -R 3 θ = 2.3–34.3°
a = 11.7207 (9) Å µ = 5.78 mm1
c = 19.209 (3) Å T = 100 K
V = 2285.3 (4) Å3 Plate, colourless
Z = 3 0.23 × 0.12 × 0.04 mm
F(000) = 1278

Data collection

Bruker APEXII CCD diffractometer 1480 independent reflections
Radiation source: fine-focus sealed tube 1480 reflections with I > 2σ(I)
graphite Rint = 0.036
φ and ω scans θmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −16→16
Tmin = 0.442, Tmax = 0.786 k = −16→16
9649 measured reflections l = −27→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.040P)2 + 9.P] where P = (Fo2 + 2Fc2)/3
1480 reflections (Δ/σ)max < 0.001
59 parameters Δρmax = 1.97 e Å3
0 restraints Δρmin = −0.76 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Tl1 0.6667 0.3333 0.3333 0.01735 (8)
S1 0.47065 (6) 0.40706 (7) 0.24746 (4) 0.02613 (15)
N1 0.0000 0.0000 0.2520 (2) 0.0268 (8)
O3 0.48799 (19) 0.29141 (19) 0.27294 (11) 0.0235 (4)
O1 0.1049 (2) 0.1084 (2) 0.25261 (16) 0.0383 (5)
C1 0.3450 (3) 0.4021 (3) 0.30137 (19) 0.0333 (6)
H1A 0.3792 0.4312 0.3474 0.050*
H1B 0.2722 0.3136 0.3034 0.050*
H1C 0.3158 0.4589 0.2824 0.050*
C2 0.3806 (4) 0.3443 (5) 0.16924 (19) 0.0498 (11)
H2A 0.4345 0.3328 0.1355 0.075*
H2B 0.3554 0.4051 0.1515 0.075*
H2C 0.3031 0.2610 0.1783 0.075*
N2 0.3333 0.6667 0.1861 (4) 0.0280 (17)* 0.50
O2 0.3414 (8) 0.5668 (8) 0.1413 (4) 0.0609 (17)* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Tl1 0.01458 (8) 0.01458 (8) 0.02288 (12) 0.00729 (4) 0.000 0.000
S1 0.0176 (3) 0.0250 (3) 0.0332 (4) 0.0087 (2) −0.0008 (2) 0.0090 (2)
N1 0.0221 (11) 0.0221 (11) 0.036 (2) 0.0110 (6) 0.000 0.000
O3 0.0209 (9) 0.0206 (8) 0.0287 (9) 0.0103 (7) −0.0054 (7) −0.0025 (7)
O1 0.0234 (10) 0.0229 (10) 0.0617 (16) 0.0063 (8) −0.0014 (10) −0.0006 (10)
C1 0.0278 (14) 0.0317 (15) 0.0436 (17) 0.0173 (12) −0.0005 (12) −0.0059 (12)
C2 0.0282 (16) 0.094 (3) 0.0273 (15) 0.0302 (19) −0.0020 (12) 0.0109 (18)

Geometric parameters (Å, °)

Tl1—O3i 2.2234 (19) N1—O1vii 1.250 (2)
Tl1—O3ii 2.2235 (19) C1—H1A 0.9600
Tl1—O3iii 2.2235 (19) C1—H1B 0.9600
Tl1—O3iv 2.2235 (19) C1—H1C 0.9600
Tl1—O3 2.2235 (19) C2—H2A 0.9600
Tl1—O3v 2.2235 (19) C2—H2B 0.9600
S1—O3 1.547 (2) C2—H2C 0.9600
S1—C2 1.771 (4) N2—O2viii 1.226 (8)
S1—C1 1.777 (3) N2—O2ix 1.226 (8)
N1—O1 1.250 (2) N2—O2x 1.226 (8)
N1—O1vi 1.250 (2) O2—N2x 1.226 (8)
O3i—Tl1—O3ii 95.26 (7) O1—N1—O1vii 119.993 (9)
O3i—Tl1—O3iii 180.0 O1vi—N1—O1vii 119.993 (9)
O3ii—Tl1—O3iii 84.74 (7) S1—O3—Tl1 119.56 (11)
O3i—Tl1—O3iv 84.74 (7) S1—C1—H1A 109.5
O3ii—Tl1—O3iv 180.0 S1—C1—H1B 109.5
O3iii—Tl1—O3iv 95.26 (7) H1A—C1—H1B 109.5
O3i—Tl1—O3 84.74 (7) S1—C1—H1C 109.5
O3ii—Tl1—O3 84.74 (7) H1A—C1—H1C 109.5
O3iii—Tl1—O3 95.26 (7) H1B—C1—H1C 109.5
O3iv—Tl1—O3 95.26 (7) S1—C2—H2A 109.5
O3i—Tl1—O3v 95.26 (7) S1—C2—H2B 109.5
O3ii—Tl1—O3v 95.26 (7) H2A—C2—H2B 109.5
O3iii—Tl1—O3v 84.74 (7) S1—C2—H2C 109.5
O3iv—Tl1—O3v 84.74 (7) H2A—C2—H2C 109.5
O3—Tl1—O3v 180.0 H2B—C2—H2C 109.5
O3—S1—C2 102.52 (19) O2viii—N2—O2ix 119.14 (17)
O3—S1—C1 104.88 (14) O2viii—N2—O2x 119.14 (17)
C2—S1—C1 99.72 (17) O2ix—N2—O2x 119.13 (17)
O1—N1—O1vi 119.993 (9)
C2—S1—O3—Tl1 148.95 (15) O2x—N2—O2—O2viii 112.8 (4)
C1—S1—O3—Tl1 −107.29 (16) O2xi—N2—O2—O2viii 157.9 (4)
O3i—Tl1—O3—S1 46.66 (9) O2xii—N2—O2—O2viii 67.8 (6)
O3ii—Tl1—O3—S1 142.45 (17) N2x—N2—O2—O2ix −112.8 (4)
O3iii—Tl1—O3—S1 −133.34 (9) O2viii—N2—O2—O2ix 134.3 (9)
O3iv—Tl1—O3—S1 −37.55 (17) O2x—N2—O2—O2ix −112.8 (4)
N2x—N2—O2—O2viii 112.8 (4) O2xi—N2—O2—O2ix −67.8 (6)
O2ix—N2—O2—O2viii −134.3 (9) O2xii—N2—O2—O2ix −157.9 (4)

Symmetry codes: (i) y+1/3, −x+y+2/3, −z+2/3; (ii) xy+1/3, x−1/3, −z+2/3; (iii) −y+1, xy, z; (iv) −x+y+1, −x+1, z; (v) −x+4/3, −y+2/3, −z+2/3; (vi) −y, xy, z; (vii) −x+y, −x, z; (viii) xy+2/3, x+1/3, −z+1/3; (ix) y−1/3, −x+y+1/3, −z+1/3; (x) −x+2/3, −y+4/3, −z+1/3; (xi) −x+y, −x+1, z; (xii) −y+1, xy+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1B···O1 0.96 2.42 3.311 (4) 154
C1—H1C···O2ix 0.96 2.54 3.448 (11) 158
C2—H2A···O1xiii 0.96 2.55 3.380 (6) 145
C2—H2B···O2 0.96 1.99 2.915 (10) 161
C2—H2C···O1 0.96 2.55 3.423 (6) 152

Symmetry codes: (ix) y−1/3, −x+y+1/3, −z+1/3; (xiii) xy+2/3, x+1/3, −z+1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2321).

References

  1. Aghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, B. (2006). Z. Anorg. Allg. Chem.632, 2058–2064.
  2. Aghabozorg, H., Ramezanipour, F., Kheirollahi, P. D., Saei, A. A., Shokrollahi, A., Shamsipur, M., Manteghi, F., Soleimannejad, J. & Sharif, M. A. (2006). Z. Anorg. Allg. Chem.632, 147–154.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ma, G., Fischer, A. & Glaser, J. (2002). Acta Cryst. C58, m177–m178. [DOI] [PubMed]
  5. Notash, B., Safari, N., Khavasi, H. R., Amani, V. & Abedi, A. (2008). J. Organomet. Chem 693, 3553–3557.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tóth, I. & Gyõri, B. (1994). Thallium: Inorganic Chemistry, Vol. 8, In Encyclopedia of Inorganic Chemistry, p. 4134. New York: John Wiley and Sons.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022646/hy2321sup1.cif

e-66-0m812-sup1.cif (13.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022646/hy2321Isup2.hkl

e-66-0m812-Isup2.hkl (73.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES