Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 16;66(Pt 7):o1648. doi: 10.1107/S1600536810021951

Dispiro­[cyclo­propane-1,5′-endo-tricyclo­[5.2.1.02,6]deca-3,8-diene-10′,1′′-cyclo­propane]

Rafał Grubba a, Łukasz Ponikiewski a,*, Jerzy Pikies a
PMCID: PMC3006803  PMID: 21587876

Abstract

The title compound, C14H16, is built up from three five-membered rings. Two of the five-membered rings display an envelope conformation and the third one is almost planar (r.m.s. deviation = 0.014 Å).

Related literature

For the synthesis, see: Khusnutdinov et al. (1988); Wilcox et al. (1961). For related structures, see: Caira et al. (1995); Haumann et al. (1997); Brookings et al. (2001).graphic file with name e-66-o1648-scheme1.jpg

Experimental

Crystal data

  • C14H16

  • M r = 184.27

  • Triclinic, Inline graphic

  • a = 6.4079 (5) Å

  • b = 8.6355 (8) Å

  • c = 10.7216 (10) Å

  • α = 68.488 (9)°

  • β = 81.625 (7)°

  • γ = 73.351 (8)°

  • V = 528.27 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.23 × 0.22 × 0.21 mm

Data collection

  • Oxford Diffraction Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.775, T max = 1

  • 3444 measured reflections

  • 2269 independent reflections

  • 1348 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.168

  • S = 0.99

  • 2269 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021951/gk2280sup1.cif

e-66-o1648-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021951/gk2280Isup2.hkl

e-66-o1648-Isup2.hkl (111.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was undertaken with financial support from the Polish State Committee of Scientific Research, grant No. NN204271535.

supplementary crystallographic information

Comment

The title compound (I) is a product of cyclodimerization of spiro[2.4]hepta-4,6-diene. After few weeks of storing of the starting diene at room temperature big crystals of (I) were isolated with relatively high yield. In contrast to previously reported method of synthesis of (I) (Khusnutdinov et al. 1988), we did not use the additional heating and the catalyst.

The X-ray crystallographic analysis confirms this proposed molecular structure (Fig. 1). The C14H16 is built up from three five-membered rings and two three-membered rings. The one of the five-membered rings (C2—C3—C4—C5—C6) is almost planar. The mean deviation of the five atoms C2, C3, C4, C5, C6 from their least-squares plane is 0.0136 Å. Additionally, the C5 atom is a junction between the five-membered ring and a cyclopropane ring. The dihedral angle between the central ring planes is 89.89 (2)°.

The second and third five-membered rings (C1—C2—C6—C7—C10 and C7—C8—C9—C1—C10) have an envelope conformation.The C10 atom is a junction with the second cyclopropane ring.

The typical C2=C3 and C6=C7 double bonds lengths 1.312 (3) Å, 1.309 (3) Å respectively suggest that the C2, C3, C6, C7 atoms are sp2 hybridized. The bond lengths and angles are within normal ranges (Brookings et al. 2001; Caira et al. 1995; Haumann et al. 1997).

Experimental

Spiro[2.4]hepta-4,6-diene was obtained according to the literature procedure (Wilcox et al., 1961). First fraction from the final distillation of spiro[2.4]hepta-4,6-diene (2.05 g) was stored at room temperature for few weeks. After this time large, colorless crystals of the title compound deposited with 54% (1.10 g) yield.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93–0.98 Å, Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 25% probability level.

Crystal data

C14H16 Z = 2
Mr = 184.27 F(000) = 200
Triclinic, P1 Dx = 1.158 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.4079 (5) Å Cell parameters from 1384 reflections
b = 8.6355 (8) Å θ = 2.6–28.5°
c = 10.7216 (10) Å µ = 0.07 mm1
α = 68.488 (9)° T = 293 K
β = 81.625 (7)° Block, colourless
γ = 73.351 (8)° 0.23 × 0.22 × 0.21 mm
V = 528.27 (8) Å3

Data collection

Oxford Diffraction Xcalibur S diffractometer 2269 independent reflections
graphite 1348 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1 Rint = 0.024
ω scans θmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −8→8
Tmin = 0.775, Tmax = 1 k = −10→10
3444 measured reflections l = −8→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.095P)2] where P = (Fo2 + 2Fc2)/3
2269 reflections (Δ/σ)max < 0.001
127 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7397 (3) 0.6967 (3) 0.2398 (2) 0.0523 (6)
H1A 0.7789 0.7846 0.2623 0.063*
C2 0.7772 (3) 0.5136 (3) 0.35036 (19) 0.0469 (5)
H2A 0.7291 0.522 0.4392 0.056*
C3 0.9992 (3) 0.3926 (3) 0.3543 (2) 0.0577 (6)
H3A 1.1234 0.4104 0.3763 0.069*
C4 0.9994 (3) 0.2591 (3) 0.3232 (2) 0.0539 (6)
H4A 1.1241 0.1731 0.3191 0.065*
C5 0.7809 (3) 0.2602 (2) 0.29543 (19) 0.0441 (5)
C6 0.6293 (3) 0.4281 (2) 0.30671 (18) 0.0398 (5)
H6A 0.5122 0.4035 0.3749 0.048*
C7 0.5333 (3) 0.5718 (2) 0.17594 (18) 0.0451 (5)
H7A 0.4042 0.5598 0.145 0.054*
C8 0.7187 (4) 0.5983 (3) 0.0741 (2) 0.0559 (6)
H8A 0.7437 0.5677 −0.0024 0.067*
C9 0.8395 (3) 0.6717 (3) 0.1112 (2) 0.0594 (6)
H9A 0.9646 0.7027 0.0658 0.071*
C10 0.5010 (3) 0.7287 (2) 0.21729 (19) 0.0455 (5)
C11 0.3131 (4) 0.7909 (3) 0.3016 (2) 0.0631 (6)
H11A 0.3434 0.8275 0.371 0.076*
H11B 0.1933 0.7363 0.3235 0.076*
C12 0.3480 (4) 0.8997 (3) 0.1568 (2) 0.0646 (6)
H12A 0.2489 0.9102 0.0921 0.078*
H12B 0.399 1.0014 0.1396 0.078*
C13 0.7460 (4) 0.1787 (3) 0.2006 (2) 0.0620 (6)
H13A 0.6199 0.2352 0.1456 0.074*
H13B 0.874 0.1232 0.1577 0.074*
C14 0.7068 (4) 0.0959 (3) 0.3469 (2) 0.0644 (6)
H14B 0.8112 −0.0099 0.393 0.077*
H14C 0.5569 0.1022 0.3809 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0501 (12) 0.0406 (12) 0.0711 (14) −0.0082 (9) −0.0029 (10) −0.0272 (11)
C2 0.0463 (11) 0.0487 (13) 0.0494 (11) −0.0028 (9) −0.0071 (9) −0.0260 (10)
C3 0.0425 (12) 0.0604 (15) 0.0706 (14) −0.0029 (10) −0.0187 (10) −0.0245 (12)
C4 0.0396 (11) 0.0502 (14) 0.0637 (13) 0.0054 (10) −0.0080 (9) −0.0207 (11)
C5 0.0454 (11) 0.0349 (11) 0.0479 (11) −0.0001 (9) −0.0058 (9) −0.0156 (9)
C6 0.0368 (10) 0.0360 (11) 0.0435 (10) −0.0049 (8) 0.0011 (8) −0.0143 (8)
C7 0.0419 (10) 0.0398 (12) 0.0527 (12) 0.0024 (9) −0.0124 (9) −0.0205 (9)
C8 0.0647 (14) 0.0459 (13) 0.0417 (11) 0.0098 (11) −0.0027 (10) −0.0156 (10)
C9 0.0503 (13) 0.0419 (13) 0.0681 (14) −0.0068 (10) 0.0119 (11) −0.0077 (11)
C10 0.0434 (11) 0.0351 (12) 0.0542 (12) 0.0013 (9) −0.0025 (9) −0.0193 (9)
C11 0.0592 (14) 0.0509 (15) 0.0694 (15) 0.0054 (11) 0.0040 (11) −0.0267 (12)
C12 0.0638 (14) 0.0429 (14) 0.0744 (16) 0.0062 (11) −0.0035 (12) −0.0204 (12)
C13 0.0758 (15) 0.0457 (14) 0.0672 (15) −0.0036 (12) −0.0123 (12) −0.0279 (12)
C14 0.0731 (15) 0.0398 (13) 0.0736 (16) −0.0078 (11) −0.0065 (12) −0.0158 (11)

Geometric parameters (Å, °)

C1—C9 1.496 (3) C7—C10 1.525 (2)
C1—C10 1.513 (3) C7—H7A 0.98
C1—C2 1.566 (3) C8—C9 1.309 (3)
C1—H1A 0.98 C8—H8A 0.93
C2—C3 1.500 (3) C9—H9A 0.93
C2—C6 1.564 (2) C10—C12 1.489 (3)
C2—H2A 0.98 C10—C11 1.491 (3)
C3—C4 1.312 (3) C11—C12 1.514 (3)
C3—H3A 0.93 C11—H11A 0.97
C4—C5 1.470 (3) C11—H11B 0.97
C4—H4A 0.93 C12—H12A 0.97
C5—C13 1.503 (3) C12—H12B 0.97
C5—C14 1.509 (3) C13—C14 1.483 (3)
C5—C6 1.532 (3) C13—H13A 0.97
C6—C7 1.556 (3) C13—H13B 0.97
C6—H6A 0.98 C14—H14B 0.97
C7—C8 1.500 (3) C14—H14C 0.97
C9—C1—C10 100.07 (16) C9—C8—C7 108.46 (17)
C9—C1—C2 106.78 (17) C9—C8—H8A 125.8
C10—C1—C2 99.49 (14) C7—C8—H8A 125.8
C9—C1—H1A 116 C8—C9—C1 107.59 (16)
C10—C1—H1A 116 C8—C9—H9A 126.2
C2—C1—H1A 116 C1—C9—H9A 126.2
C3—C2—C6 103.53 (15) C12—C10—C11 61.07 (14)
C3—C2—C1 117.77 (17) C12—C10—C1 125.94 (18)
C6—C2—C1 102.59 (14) C11—C10—C1 126.01 (17)
C3—C2—H2A 110.8 C12—C10—C7 125.59 (17)
C6—C2—H2A 110.8 C11—C10—C7 125.14 (17)
C1—C2—H2A 110.8 C1—C10—C7 94.78 (15)
C4—C3—C2 112.80 (18) C10—C11—C12 59.39 (13)
C4—C3—H3A 123.6 C10—C11—H11A 117.8
C2—C3—H3A 123.6 C12—C11—H11A 117.8
C3—C4—C5 112.61 (19) C10—C11—H11B 117.8
C3—C4—H4A 123.7 C12—C11—H11B 117.8
C5—C4—H4A 123.7 H11A—C11—H11B 115
C4—C5—C13 122.29 (18) C10—C12—C11 59.55 (14)
C4—C5—C14 120.29 (18) C10—C12—H12A 117.8
C13—C5—C14 58.99 (13) C11—C12—H12A 117.8
C4—C5—C6 105.79 (15) C10—C12—H12B 117.8
C13—C5—C6 123.02 (17) C11—C12—H12B 117.8
C14—C5—C6 120.92 (17) H12A—C12—H12B 115
C5—C6—C7 118.11 (15) C14—C13—C5 60.73 (13)
C5—C6—C2 105.17 (14) C14—C13—H13A 117.7
C7—C6—C2 102.28 (14) C5—C13—H13A 117.7
C5—C6—H6A 110.2 C14—C13—H13B 117.7
C7—C6—H6A 110.2 C5—C13—H13B 117.7
C2—C6—H6A 110.2 H13A—C13—H13B 114.8
C8—C7—C10 99.26 (15) C13—C14—C5 60.28 (13)
C8—C7—C6 107.61 (16) C13—C14—H14B 117.7
C10—C7—C6 99.27 (14) C5—C14—H14B 117.7
C8—C7—H7A 116.1 C13—C14—H14C 117.7
C10—C7—H7A 116.1 C5—C14—H14C 117.7
C6—C7—H7A 116.1 H14B—C14—H14C 114.9
C9—C1—C2—C3 45.1 (2) C6—C7—C8—C9 −70.4 (2)
C10—C1—C2—C3 148.69 (16) C7—C8—C9—C1 0.2 (2)
C9—C1—C2—C6 −67.80 (18) C10—C1—C9—C8 −33.2 (2)
C10—C1—C2—C6 35.83 (17) C2—C1—C9—C8 70.0 (2)
C6—C2—C3—C4 −0.8 (2) C9—C1—C10—C12 −91.6 (2)
C1—C2—C3—C4 −113.1 (2) C2—C1—C10—C12 159.29 (19)
C2—C3—C4—C5 −1.3 (3) C9—C1—C10—C11 −169.39 (19)
C3—C4—C5—C13 150.9 (2) C2—C1—C10—C11 81.5 (2)
C3—C4—C5—C14 −138.8 (2) C9—C1—C10—C7 49.82 (17)
C3—C4—C5—C6 2.8 (2) C2—C1—C10—C7 −59.27 (16)
C4—C5—C6—C7 110.17 (18) C8—C7—C10—C12 92.4 (2)
C13—C5—C6—C7 −37.6 (3) C6—C7—C10—C12 −157.93 (19)
C14—C5—C6—C7 −108.5 (2) C8—C7—C10—C11 169.4 (2)
C4—C5—C6—C2 −3.09 (19) C6—C7—C10—C11 −80.9 (2)
C13—C5—C6—C2 −150.86 (18) C8—C7—C10—C1 −49.28 (17)
C14—C5—C6—C2 138.22 (18) C6—C7—C10—C1 60.43 (16)
C3—C2—C6—C5 2.37 (18) C1—C10—C11—C12 115.3 (2)
C1—C2—C6—C5 125.38 (16) C7—C10—C11—C12 −115.1 (2)
C3—C2—C6—C7 −121.60 (17) C1—C10—C12—C11 −115.4 (2)
C1—C2—C6—C7 1.41 (17) C7—C10—C12—C11 114.4 (2)
C5—C6—C7—C8 −49.8 (2) C4—C5—C13—C14 108.4 (2)
C2—C6—C7—C8 65.04 (17) C6—C5—C13—C14 −108.9 (2)
C5—C6—C7—C10 −152.68 (15) C4—C5—C14—C13 −111.8 (2)
C2—C6—C7—C10 −37.84 (17) C6—C5—C14—C13 112.4 (2)
C10—C7—C8—C9 32.5 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2280).

References

  1. Brookings, D. C., Harrison, S. A., Whitby, R. J., Crombie, B. & Jones, R. V. H. (2001). Organometallics, 20, 4574–4583.
  2. Caira, M. R., Bedekar, A. V. & Singh, V. (1995). J. Chem. Crystallogr.25, 583–587.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Haumann, T., Boese, R., Kozhushkov, S. I., Rauch, K. & de Meijere, A. (1997). Liebigs Ann Chem 10, 2047–2053.
  6. Khusnutdinov, R. I., Dokichev, V. A., Galeev, D. K., Asylguzhina, N. F., Sultanov, S. Z. & Dzhemilev, U. M. (1988). Russ. Chem. Bull.37, 1932–1935.
  7. Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wilcox, C. F. & Craig, R. R. (1961). J. Am. Chem. Soc.83, 3866–3871.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021951/gk2280sup1.cif

e-66-o1648-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021951/gk2280Isup2.hkl

e-66-o1648-Isup2.hkl (111.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES