Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 9;66(Pt 7):o1606. doi: 10.1107/S1600536810020234

2-Oxo-4-trifluoro­meth­yl-2H-chromen-7-yl 2-bromo-2-methyl­propano­ate

N Haridharan a, V Ramkumar a, R Dhamodharan a,*
PMCID: PMC3006816  PMID: 21587840

Abstract

In the title compound, C14H10BrF3O4, the coumarin ring system is almost plannar (r.m.s. deviation = 0.025 Å) and a short C—H⋯F contact occurs. The propano­ate fragment is orientated almost perpendicular to the ring [dihedral angle = 71.80 (12)°]. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, generating [100] chains.

Related literature

For the applications of the title compound in polymer chemistry, see: Sinkel et al. (2008); Matyjaszewski et al. (2008); Stenzel-Rosenbaum et al. (2001).graphic file with name e-66-o1606-scheme1.jpg

Experimental

Crystal data

  • C14H10BrF3O4

  • M r = 379.13

  • Triclinic, Inline graphic

  • a = 6.1842 (4) Å

  • b = 11.0297 (6) Å

  • c = 11.0619 (7) Å

  • α = 99.982 (2)°

  • β = 91.797 (2)°

  • γ = 104.387 (2)°

  • V = 717.61 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 298 K

  • 0.40 × 0.26 × 0.24 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.389, T max = 0.542

  • 9951 measured reflections

  • 3796 independent reflections

  • 2390 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.109

  • S = 1.01

  • 3796 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.85 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020234/hb5450sup1.cif

e-66-o1606-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020234/hb5450Isup2.hkl

e-66-o1606-Isup2.hkl (186.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯F2 0.93 2.47 3.019 (3) 118
C6—H6⋯O4i 0.93 2.52 3.261 (4) 136

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

The title compound C14H10BrF3O4, is a monofunctional coumarin derivative, which is used as an initiator (Sinkelet al. 2008) in Atom Transfer Radical Polymerization (ATRP). Being a monofunctional unit it can form end-functionalized linear polymers (Matyjaszewski et al. 2008; Stenzel-Rosenbaum et al.2001) when used as an initiator. Since most of the synthesized functionalized initiators are characterized by other techniques, their single crystal XRD reports are few.

The title compound is one such successful ATRP initiator which was crystallised from chloroform. It contains coumarin derivative with bromo methyl propanoate. The coumarin moiety is an important oxygen containing heterocyclic compound with diverse bioactivities such as non peptidic HIV protease inhibition and tyrosine kinase inhibition. Owing to such interesting properties, the synthesis of coumarin based initiators and their crystal structures are worth while to study.

In the title compound C14 H10 Br F3 O4, the coumarin ring system is plannar with the 2-bromo-2-methyl propanoate moiety almost perpendicular. The C—F bond lengths of 1.333 (2) Å,1.324 (3)Å and 1.331 (3)Å are normal in this structure. One F atom (F1) lie in plane with the coumarin ring system and the other two F atoms are above and below the plane. The torsion angle of C6—C7—O3—C11 and C8—C7—O3—C11 are -114.21 (3)° and 71.42 (2)° respectively. The crystal is stabilized by intermolecular C—H···O hydrogen bond.

Experimental

7-Hydroxy-4-trifluoromethylcoumarin 5 g (0.02 mole), triethylamine 4.83 g (0.04 mole) and THF (400 ml) were placed in a 3-neck round bottomed flask. Bromoisobutyrl bromide 10.9 g (0.04 mole) was added slowly, using a syringe, with stirring, upon which an white precipitate of triethylammonium bromide was formed. The mixture was left to react for 6 hours, with stirring. Subsequently, triethylammonium bromide, the precipitate was removed by filtration and the THF was removed by rotary evaporation. The resulting crude product was dissolved in ethyl acetate, washed with bicarbonate solution and then with water thrice followed by brine solution and dried over anhydrous sodium sulphate. The resulting solvent was removed by rotary evaporation. The product was purified by column chromatography technique using 15% ethyl acetate in hexane as the eluent to obtain pure initiator as a bright white solid. Recrystallization of the compound from chloroform gave colourless blocks of (I).

Refinement

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H = 0.93 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl H atoms at Uiso(H) = 1.2Ueq(C) and methyl H atoms at Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of (I) with atoms represented as 30% probability ellipsoids.

Fig. 2.

Fig. 2.

The packing diagram showing the C—H···O interaction.

Crystal data

C14H10BrF3O4 Z = 2
Mr = 379.13 F(000) = 376
Triclinic, P1 Dx = 1.755 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.1842 (4) Å Cell parameters from 3404 reflections
b = 11.0297 (6) Å θ = 2.4–25.3°
c = 11.0619 (7) Å µ = 2.91 mm1
α = 99.982 (2)° T = 298 K
β = 91.797 (2)° Rectangular, colourless
γ = 104.387 (2)° 0.40 × 0.26 × 0.24 mm
V = 717.61 (8) Å3

Data collection

Bruker APEXII CCD diffractometer 3796 independent reflections
Radiation source: fine-focus sealed tube 2390 reflections with I > 2σ(I)
graphite Rint = 0.022
phi and ω scans θmax = 30.8°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −7→8
Tmin = 0.389, Tmax = 0.542 k = −15→14
9951 measured reflections l = −13→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.448P] where P = (Fo2 + 2Fc2)/3
3796 reflections (Δ/σ)max < 0.001
201 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −0.85 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell esds are takeninto account individually in the estimation of esds in distances, anglesand torsion angles; correlations between esds in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.06908 (6) −0.04175 (3) 0.29516 (4) 0.06662 (16)
C1 0.2614 (5) 0.5339 (3) −0.2219 (3) 0.0450 (7)
C2 0.4147 (5) 0.4806 (3) −0.2966 (3) 0.0450 (7)
H2 0.4574 0.5118 −0.3675 0.054*
C3 0.4972 (4) 0.3873 (3) −0.2666 (2) 0.0363 (6)
C4 0.4377 (4) 0.3379 (2) −0.1559 (2) 0.0322 (5)
C5 0.5183 (4) 0.2437 (3) −0.1127 (2) 0.0375 (6)
H5 0.6232 0.2098 −0.1557 0.045*
C6 0.4449 (5) 0.2007 (3) −0.0080 (3) 0.0408 (6)
H6 0.4995 0.1385 0.0202 0.049*
C7 0.2881 (4) 0.2518 (3) 0.0548 (2) 0.0359 (6)
C8 0.2074 (4) 0.3459 (3) 0.0179 (2) 0.0386 (6)
H8 0.1041 0.3801 0.0622 0.046*
C9 0.2849 (4) 0.3880 (2) −0.0872 (2) 0.0333 (6)
C10 0.6453 (5) 0.3300 (3) −0.3523 (3) 0.0464 (7)
C11 0.0108 (4) 0.1442 (3) 0.1690 (3) 0.0361 (6)
C12 −0.0307 (4) 0.1167 (3) 0.2974 (3) 0.0389 (6)
C13 0.1076 (6) 0.2198 (3) 0.4010 (3) 0.0541 (8)
H13A 0.2639 0.2317 0.3887 0.081*
H13B 0.0784 0.1940 0.4787 0.081*
H13C 0.0672 0.2983 0.4005 0.081*
C14 −0.2790 (5) 0.0855 (3) 0.3145 (3) 0.0516 (8)
H14A −0.3331 0.1596 0.3129 0.077*
H14B −0.3045 0.0591 0.3923 0.077*
H14C −0.3569 0.0179 0.2493 0.077*
F1 0.6893 (4) 0.3893 (2) −0.44723 (18) 0.0775 (6)
F2 0.8423 (3) 0.3353 (2) −0.29621 (18) 0.0652 (5)
F3 0.5518 (3) 0.20819 (19) −0.39741 (17) 0.0645 (5)
O1 0.2025 (3) 0.48421 (18) −0.11926 (17) 0.0429 (5)
O2 0.1777 (4) 0.6161 (2) −0.2441 (2) 0.0648 (6)
O3 0.2269 (3) 0.2130 (2) 0.16562 (17) 0.0452 (5)
O4 −0.1216 (3) 0.1118 (2) 0.08271 (19) 0.0498 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0781 (3) 0.0645 (3) 0.0835 (3) 0.04411 (19) 0.0312 (2) 0.0426 (2)
C1 0.0603 (18) 0.0383 (16) 0.0422 (16) 0.0201 (13) 0.0037 (14) 0.0123 (13)
C2 0.0613 (18) 0.0436 (17) 0.0361 (15) 0.0170 (13) 0.0083 (13) 0.0174 (13)
C3 0.0408 (14) 0.0373 (15) 0.0311 (13) 0.0087 (11) 0.0039 (11) 0.0083 (11)
C4 0.0354 (13) 0.0320 (13) 0.0301 (13) 0.0100 (10) 0.0012 (11) 0.0066 (11)
C5 0.0398 (14) 0.0386 (15) 0.0398 (15) 0.0179 (11) 0.0082 (12) 0.0103 (12)
C6 0.0420 (15) 0.0426 (16) 0.0436 (16) 0.0157 (12) 0.0015 (13) 0.0166 (13)
C7 0.0355 (13) 0.0419 (15) 0.0314 (13) 0.0071 (11) 0.0006 (11) 0.0141 (12)
C8 0.0399 (14) 0.0448 (16) 0.0359 (14) 0.0165 (12) 0.0090 (12) 0.0114 (12)
C9 0.0371 (13) 0.0322 (13) 0.0343 (14) 0.0136 (11) −0.0003 (11) 0.0097 (11)
C10 0.0507 (17) 0.055 (2) 0.0388 (16) 0.0182 (14) 0.0111 (13) 0.0158 (14)
C11 0.0355 (13) 0.0387 (15) 0.0409 (15) 0.0163 (11) 0.0076 (12) 0.0150 (12)
C12 0.0410 (14) 0.0400 (15) 0.0434 (16) 0.0164 (12) 0.0110 (12) 0.0184 (13)
C13 0.063 (2) 0.062 (2) 0.0375 (16) 0.0097 (16) 0.0049 (14) 0.0203 (15)
C14 0.0483 (17) 0.0514 (18) 0.060 (2) 0.0164 (14) 0.0240 (15) 0.0162 (16)
F1 0.1027 (17) 0.1013 (16) 0.0556 (12) 0.0515 (13) 0.0434 (12) 0.0444 (12)
F2 0.0437 (10) 0.0907 (15) 0.0663 (12) 0.0224 (10) 0.0112 (9) 0.0201 (11)
F3 0.0773 (13) 0.0584 (12) 0.0548 (11) 0.0235 (10) 0.0128 (10) −0.0077 (9)
O1 0.0573 (12) 0.0422 (11) 0.0403 (11) 0.0277 (9) 0.0093 (9) 0.0146 (9)
O2 0.0941 (18) 0.0559 (14) 0.0647 (15) 0.0455 (13) 0.0132 (13) 0.0270 (12)
O3 0.0371 (10) 0.0647 (13) 0.0372 (10) 0.0071 (9) 0.0029 (8) 0.0271 (9)
O4 0.0422 (11) 0.0607 (13) 0.0453 (12) 0.0078 (9) −0.0033 (10) 0.0161 (10)

Geometric parameters (Å, °)

Br1—C12 1.990 (3) C8—H8 0.9300
C1—O2 1.205 (3) C9—O1 1.378 (3)
C1—O1 1.366 (3) C10—F3 1.324 (4)
C1—C2 1.444 (4) C10—F1 1.332 (3)
C2—C3 1.340 (4) C10—F2 1.333 (4)
C2—H2 0.9300 C11—O4 1.181 (3)
C3—C4 1.447 (4) C11—O3 1.368 (3)
C3—C10 1.507 (4) C11—C12 1.520 (4)
C4—C9 1.391 (4) C12—C14 1.513 (4)
C4—C5 1.404 (4) C12—C13 1.529 (4)
C5—C6 1.375 (4) C13—H13A 0.9600
C5—H5 0.9300 C13—H13B 0.9600
C6—C7 1.385 (4) C13—H13C 0.9600
C6—H6 0.9300 C14—H14A 0.9600
C7—C8 1.373 (4) C14—H14B 0.9600
C7—O3 1.400 (3) C14—H14C 0.9600
C8—C9 1.382 (4)
O2—C1—O1 117.5 (3) F3—C10—F2 106.4 (3)
O2—C1—C2 125.6 (3) F1—C10—F2 106.6 (2)
O1—C1—C2 116.9 (2) F3—C10—C3 111.5 (2)
C3—C2—C1 121.9 (3) F1—C10—C3 112.1 (3)
C3—C2—H2 119.1 F2—C10—C3 112.4 (2)
C1—C2—H2 119.1 O4—C11—O3 123.6 (2)
C2—C3—C4 120.6 (3) O4—C11—C12 126.0 (2)
C2—C3—C10 119.4 (3) O3—C11—C12 110.4 (2)
C4—C3—C10 119.9 (2) C14—C12—C11 110.2 (2)
C9—C4—C5 117.5 (2) C14—C12—C13 112.9 (3)
C9—C4—C3 116.5 (2) C11—C12—C13 114.2 (2)
C5—C4—C3 126.0 (2) C14—C12—Br1 107.64 (19)
C6—C5—C4 121.1 (2) C11—C12—Br1 102.84 (17)
C6—C5—H5 119.4 C13—C12—Br1 108.4 (2)
C4—C5—H5 119.4 C12—C13—H13A 109.5
C5—C6—C7 118.8 (2) C12—C13—H13B 109.5
C5—C6—H6 120.6 H13A—C13—H13B 109.5
C7—C6—H6 120.6 C12—C13—H13C 109.5
C8—C7—C6 122.4 (2) H13A—C13—H13C 109.5
C8—C7—O3 119.5 (2) H13B—C13—H13C 109.5
C6—C7—O3 117.8 (2) C12—C14—H14A 109.5
C7—C8—C9 117.7 (2) C12—C14—H14B 109.5
C7—C8—H8 121.2 H14A—C14—H14B 109.5
C9—C8—H8 121.2 C12—C14—H14C 109.5
O1—C9—C8 115.6 (2) H14A—C14—H14C 109.5
O1—C9—C4 121.9 (2) H14B—C14—H14C 109.5
C8—C9—C4 122.5 (2) C1—O1—C9 122.1 (2)
F3—C10—F1 107.5 (2) C11—O3—C7 117.3 (2)
O2—C1—C2—C3 −178.7 (3) C2—C3—C10—F3 −115.9 (3)
O1—C1—C2—C3 −0.5 (4) C4—C3—C10—F3 61.5 (3)
C1—C2—C3—C4 −1.1 (4) C2—C3—C10—F1 4.7 (4)
C1—C2—C3—C10 176.3 (3) C4—C3—C10—F1 −177.9 (2)
C2—C3—C4—C9 2.8 (4) C2—C3—C10—F2 124.8 (3)
C10—C3—C4—C9 −174.5 (2) C4—C3—C10—F2 −57.8 (3)
C2—C3—C4—C5 −177.8 (3) O4—C11—C12—C14 −20.7 (4)
C10—C3—C4—C5 4.8 (4) O3—C11—C12—C14 159.3 (2)
C9—C4—C5—C6 1.5 (4) O4—C11—C12—C13 −149.0 (3)
C3—C4—C5—C6 −177.9 (3) O3—C11—C12—C13 31.0 (3)
C4—C5—C6—C7 0.2 (4) O4—C11—C12—Br1 93.8 (3)
C5—C6—C7—C8 −1.6 (4) O3—C11—C12—Br1 −86.2 (2)
C5—C6—C7—O3 −175.8 (2) O2—C1—O1—C9 178.6 (3)
C6—C7—C8—C9 1.2 (4) C2—C1—O1—C9 0.3 (4)
O3—C7—C8—C9 175.3 (2) C8—C9—O1—C1 −178.9 (2)
C7—C8—C9—O1 −178.8 (2) C4—C9—O1—C1 1.6 (4)
C7—C8—C9—C4 0.6 (4) O4—C11—O3—C7 3.3 (4)
C5—C4—C9—O1 177.5 (2) C12—C11—O3—C7 −176.7 (2)
C3—C4—C9—O1 −3.1 (4) C8—C7—O3—C11 71.5 (3)
C5—C4—C9—C8 −1.9 (4) C6—C7—O3—C11 −114.2 (3)
C3—C4—C9—C8 177.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···F2 0.93 2.47 3.019 (3) 118
C6—H6···O4i 0.93 2.52 3.261 (4) 136

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5450).

References

  1. Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Matyjaszewski, K. & Mueller, L. (2008). Macromolecules, 41, 1067–1069.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sinkel, C., Greiner, A. & Agarwal, S. (2008). Macromolecules, 41, 1067–1069.
  6. Stenzel-Rosenbaum, M., Davis, T. P., Chen, V. & Fane, A. G. (2001). J. Polym. Sci. A Polym. Chem 39, 2777–2783.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020234/hb5450sup1.cif

e-66-o1606-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020234/hb5450Isup2.hkl

e-66-o1606-Isup2.hkl (186.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES