Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 5;66(Pt 7):o1545. doi: 10.1107/S1600536810020830

3-[(2-Chloro-6-methyl­quinolin-3-yl)meth­yl]quinazolin-4(3H)-one

S Mohana Roopan a, F Nawaz Khan a, Sriramakrishnaswamy Kone a, Venkatesha R Hathwar b, Mehmet Akkurt c,*
PMCID: PMC3006817  PMID: 21587791

Abstract

In the title mol­ecule, C19H14ClN3O, the quinoline and quinazoline ring systems form a dihedral angle of 80.75 (4)°. In the crystal, the mol­ecules are linked by pairs of C—H⋯N hydrogen bonds into centrosymmetric dimers, generating R 2 2(6) ring motifs. The structure is further stabilized by C—H⋯π inter­actions and π–π stacking inter­actions [centroid–centroid distances = 3.7869 (8) and 3.8490 (8) Å].

Related literature

For quinoline analogues, see: Roopan et al. (2009); Khan et al. (2009, 2010a ,b ). For quinazolinone analogues, see: Roopan et al. (2008a ,b ). For the properties and applications of related compounds, see: Abdel-Hamide et al. (1996); Bekhit & Khalil (1998); Chapman et al. (1963); Honda et al. (1979).graphic file with name e-66-o1545-scheme1.jpg

Experimental

Crystal data

  • C19H14ClN3O

  • M r = 335.78

  • Monoclinic, Inline graphic

  • a = 7.86728 (14) Å

  • b = 14.7098 (3) Å

  • c = 13.7055 (3) Å

  • β = 102.1500 (17)°

  • V = 1550.56 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 K

  • 0.25 × 0.21 × 0.16 mm

Data collection

  • Oxford Diffraction Xcalibur E CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.938, T max = 0.960

  • 15755 measured reflections

  • 3048 independent reflections

  • 2417 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.096

  • S = 1.14

  • 3048 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020830/gk2276sup1.cif

e-66-o1545-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020830/gk2276Isup2.hkl

e-66-o1545-Isup2.hkl (149.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1/C1–C4/C9 and N2/N3/C12/C13/C18/C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯N3i 0.93 2.51 3.271 (2) 139
C8—H8⋯Cg2ii 0.93 2.89 3.6598 (16) 142
C10—H10ACg1iii 0.96 2.68 3.5189 (17) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

Heterocyclic chemistry comprises at least half of all organic chemistry research worldwide (Roopan et al., 2008a,b). In particular, heterocyclic structures form the basis of many pharmaceutical, agrochemical and veterinary products. 4(3H)-quinazolinones and quinolines (Roopan et al., 2009) are classes of fused heterocycles that are of considerable interest because of their biological properties. Some are endowed with antimicrobial, aniconvulsant, antihistamine and anti-inflammatory properties (Abdel-Hamide et al., 1996, Chapman et al., 1963, Bekhit et al., 1998). On the other hand, some quinoline derivatives also have various biological properties like antioxidant, hemolytic and cytotoxicity. These observations prompted us to synthesized heterocyclic compounds containing a quinolinyl-quinazolinone moiety.

As shown in Fig. 1, the quinoline (N1/C1–C9) and quinazoline (N2/N3/C12–C19) ring systems of the title molecule (I) are almost planar with maximum deviations of -0.016 (1) Å for C2 and 0.065 (1) Å for N2, respectively, and there is a dihedral angle of 80.75 (4)° between them.

Two neighbouring molecules are linked by a pair of C—H···N hydrogen bonds into a pseudo-centrosymmetric dimer, generating an R22(6) ring motif (Table 1, Fig. 2). In addition, the structure is stabilized by C—H···π interactions (Table 1) and π-π stacking interactions [Cg1···Cg3(2 - x,-y, 2 - z) = 3.7869 (8) Å and Cg3···Cg3(1 - x, -y, 2 - z) = 3.8490 (8) Å; where Cg1 and Cg3 are centroids of the N1/C1–C4/C9 and C4–C9 rings, respectively].

Experimental

To a solution of 4(3H)-quinazolinone (146 mg, 1 mmol) in 2 ml of DMF were added KOtBu (112 mg, 1 mmol) in 10 ml of THF and 2-chloro-3-(chloromethyl)-6-methylquinoline (225 mg, 1 mmol) and the resulting mixture was refluxed at 343 K for 1 h. After the completion, the reaction was cooled and the excess of solvent removed under reduced pressure. Crushed ice was mixed with the residue. White solid was formed which was purified by column chromatography using hexane and ethylacetate as the eluant. Crystals of suitable quality were grown by solvent evaporation from a solution of the compound in diethyl ether.

Refinement

The H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for others H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing viewed down a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C19H14ClN3O F(000) = 696
Mr = 335.78 Dx = 1.438 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1326 reflections
a = 7.86728 (14) Å θ = 2.0–20.7°
b = 14.7098 (3) Å µ = 0.26 mm1
c = 13.7055 (3) Å T = 295 K
β = 102.1500 (17)° Needle, colourless
V = 1550.56 (5) Å3 0.25 × 0.21 × 0.16 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur E CCD diffractometer 3048 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2417 reflections with I > 2σ(I)
graphite Rint = 0.026
ω scans θmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −9→9
Tmin = 0.938, Tmax = 0.960 k = −18→18
15755 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.0739P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.001
3048 reflections Δρmax = 0.18 e Å3
219 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0123 (15)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.05099 (5) 0.28142 (3) 1.12633 (3) 0.0552 (2)
O1 0.60460 (15) 0.24457 (8) 0.79970 (8) 0.0550 (4)
N1 0.90795 (14) 0.12379 (9) 1.13506 (8) 0.0409 (4)
N2 0.82439 (14) 0.32871 (8) 0.89095 (8) 0.0368 (4)
N3 0.79403 (17) 0.48498 (9) 0.92418 (9) 0.0453 (4)
C1 0.94294 (18) 0.18353 (10) 1.07237 (11) 0.0389 (5)
C2 0.90272 (18) 0.17726 (10) 0.96669 (10) 0.0374 (5)
C3 0.82067 (18) 0.09933 (10) 0.92894 (10) 0.0395 (5)
C4 0.77799 (17) 0.03094 (10) 0.99195 (10) 0.0366 (4)
C5 0.69103 (18) −0.05001 (10) 0.95563 (11) 0.0413 (5)
C6 0.64859 (18) −0.11435 (10) 1.01883 (11) 0.0403 (5)
C7 0.6946 (2) −0.09747 (11) 1.12254 (11) 0.0461 (5)
C8 0.77957 (19) −0.02054 (11) 1.16013 (11) 0.0444 (5)
C9 0.82367 (17) 0.04583 (10) 1.09569 (10) 0.0373 (5)
C10 0.5554 (2) −0.20015 (11) 0.97943 (13) 0.0519 (6)
C11 0.9436 (2) 0.25093 (11) 0.89857 (12) 0.0442 (5)
C12 0.65169 (19) 0.31653 (10) 0.84072 (10) 0.0383 (4)
C13 0.54199 (18) 0.39518 (10) 0.84513 (10) 0.0376 (5)
C14 0.3617 (2) 0.38997 (12) 0.80976 (11) 0.0497 (6)
C15 0.2604 (2) 0.46424 (15) 0.81376 (12) 0.0613 (7)
C16 0.3351 (3) 0.54611 (15) 0.85043 (13) 0.0658 (7)
C17 0.5113 (2) 0.55297 (12) 0.88491 (12) 0.0571 (6)
C18 0.61654 (19) 0.47690 (10) 0.88456 (10) 0.0406 (5)
C19 0.88460 (19) 0.41208 (11) 0.92637 (11) 0.0415 (5)
H3 0.79220 0.09100 0.86020 0.0470*
H5 0.66180 −0.06000 0.88710 0.0500*
H7 0.66590 −0.14020 1.16640 0.0550*
H8 0.80880 −0.01170 1.22880 0.0530*
H10A 0.44010 −0.19950 0.99230 0.0780*
H10B 0.61780 −0.25170 1.01190 0.0780*
H10C 0.54880 −0.20420 0.90880 0.0780*
H11A 1.06170 0.27200 0.92330 0.0530*
H11B 0.93730 0.22560 0.83250 0.0530*
H14 0.31130 0.33570 0.78350 0.0600*
H15 0.14040 0.46010 0.79180 0.0740*
H16 0.26500 0.59680 0.85160 0.0790*
H17 0.56050 0.60830 0.90850 0.0690*
H19 1.00250 0.41650 0.95480 0.0500*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0554 (3) 0.0545 (3) 0.0522 (3) −0.0078 (2) 0.0032 (2) −0.0056 (2)
O1 0.0623 (7) 0.0417 (7) 0.0540 (7) −0.0106 (5) −0.0034 (5) −0.0054 (5)
N1 0.0375 (7) 0.0482 (8) 0.0363 (7) 0.0036 (6) 0.0060 (5) −0.0013 (6)
N2 0.0353 (6) 0.0375 (7) 0.0368 (6) −0.0034 (5) 0.0059 (5) 0.0015 (5)
N3 0.0483 (8) 0.0392 (8) 0.0451 (7) −0.0082 (6) 0.0021 (6) 0.0015 (6)
C1 0.0316 (7) 0.0426 (9) 0.0422 (8) 0.0051 (6) 0.0068 (6) −0.0016 (7)
C2 0.0347 (8) 0.0412 (9) 0.0377 (8) 0.0094 (6) 0.0110 (6) 0.0016 (6)
C3 0.0442 (8) 0.0435 (9) 0.0320 (7) 0.0103 (7) 0.0109 (6) −0.0005 (6)
C4 0.0365 (8) 0.0397 (8) 0.0347 (7) 0.0109 (6) 0.0100 (6) 0.0001 (6)
C5 0.0440 (8) 0.0446 (9) 0.0361 (8) 0.0083 (7) 0.0105 (6) −0.0042 (7)
C6 0.0358 (8) 0.0401 (9) 0.0468 (9) 0.0088 (6) 0.0128 (6) 0.0002 (7)
C7 0.0449 (9) 0.0495 (10) 0.0467 (9) 0.0038 (7) 0.0158 (7) 0.0083 (7)
C8 0.0439 (8) 0.0557 (10) 0.0341 (8) 0.0024 (7) 0.0096 (6) 0.0028 (7)
C9 0.0326 (7) 0.0436 (9) 0.0369 (8) 0.0087 (6) 0.0099 (6) 0.0007 (6)
C10 0.0519 (10) 0.0455 (10) 0.0604 (10) 0.0026 (8) 0.0169 (8) −0.0015 (8)
C11 0.0436 (9) 0.0479 (9) 0.0436 (8) 0.0035 (7) 0.0152 (7) 0.0017 (7)
C12 0.0430 (8) 0.0383 (8) 0.0317 (7) −0.0078 (7) 0.0038 (6) 0.0041 (6)
C13 0.0392 (8) 0.0436 (9) 0.0293 (7) −0.0041 (7) 0.0054 (6) 0.0083 (6)
C14 0.0414 (9) 0.0646 (11) 0.0400 (9) −0.0059 (8) 0.0015 (7) 0.0123 (8)
C15 0.0433 (10) 0.0941 (15) 0.0460 (10) 0.0117 (10) 0.0084 (7) 0.0210 (10)
C16 0.0701 (13) 0.0799 (14) 0.0482 (10) 0.0341 (11) 0.0143 (9) 0.0114 (10)
C17 0.0739 (12) 0.0484 (10) 0.0478 (10) 0.0125 (9) 0.0101 (8) 0.0022 (8)
C18 0.0475 (9) 0.0425 (9) 0.0318 (7) −0.0007 (7) 0.0083 (6) 0.0046 (6)
C19 0.0386 (8) 0.0432 (9) 0.0402 (8) −0.0114 (7) 0.0028 (6) 0.0039 (7)

Geometric parameters (Å, °)

Cl1—C1 1.7545 (15) C13—C14 1.401 (2)
O1—C12 1.2191 (19) C13—C18 1.396 (2)
N1—C1 1.2984 (19) C14—C15 1.360 (3)
N1—C9 1.3767 (19) C15—C16 1.387 (3)
N2—C11 1.469 (2) C16—C17 1.371 (3)
N2—C12 1.3994 (19) C17—C18 1.393 (2)
N2—C19 1.367 (2) C3—H3 0.9300
N3—C18 1.393 (2) C5—H5 0.9300
N3—C19 1.284 (2) C7—H7 0.9300
C1—C2 1.419 (2) C8—H8 0.9300
C2—C3 1.363 (2) C10—H10A 0.9600
C2—C11 1.509 (2) C10—H10B 0.9600
C3—C4 1.412 (2) C10—H10C 0.9600
C4—C5 1.411 (2) C11—H11A 0.9700
C4—C9 1.4084 (19) C11—H11B 0.9700
C5—C6 1.371 (2) C14—H14 0.9300
C6—C7 1.413 (2) C15—H15 0.9300
C6—C10 1.502 (2) C16—H16 0.9300
C7—C8 1.359 (2) C17—H17 0.9300
C8—C9 1.408 (2) C19—H19 0.9300
C12—C13 1.452 (2)
Cl1···N2 3.4130 (12) C15···H3ix 2.9900
Cl1···C19 3.3776 (16) C16···H3ix 2.9200
Cl1···H11A 2.8000 C18···H8vi 2.9100
Cl1···H19 3.0400 C19···H15x 3.0800
Cl1···H16i 3.1300 C19···H19iv 3.0300
Cl1···H11Bii 3.1400 C19···H8vi 3.0300
O1···C2 3.0757 (18) H3···O1 2.7300
O1···C3 3.0535 (18) H3···H5 2.5100
O1···H3 2.7300 H3···H11B 2.3600
O1···H11B 2.5800 H3···C15xi 2.9900
O1···H14 2.6400 H3···C16xi 2.9200
O1···H7iii 2.7400 H5···H3 2.5100
N2···Cl1 3.4130 (12) H5···H10C 2.3400
N3···C19iv 3.271 (2) H5···C14xi 2.7700
N1···H15v 2.8000 H5···C15xi 2.9600
N3···H19iv 2.5100 H7···O1iii 2.7400
N3···H8vi 2.7300 H8···N3ii 2.7300
C1···C5vii 3.573 (2) H8···C18ii 2.9100
C2···O1 3.0757 (18) H8···C19ii 3.0300
C3···O1 3.0535 (18) H10A···C1iii 2.9700
C3···C9vii 3.592 (2) H10A···C2iii 2.8900
C3···C12 3.572 (2) H10A···C3iii 2.9100
C4···C4vii 3.5715 (19) H10A···C4iii 3.0500
C4···C6iii 3.547 (2) H10A···C12iii 3.0700
C5···C1vii 3.572 (2) H10B···H17viii 2.4900
C6···C4iii 3.547 (2) H10B···H11Avii 2.5100
C9···C3vii 3.592 (2) H10C···H5 2.3400
C12···C3 3.572 (2) H11A···Cl1 2.8000
C16···C18i 3.587 (2) H11A···H19 2.2400
C17···C18i 3.539 (2) H11A···H10Bvii 2.5100
C17···C17i 3.557 (2) H11B···O1 2.5800
C18···C17i 3.539 (2) H11B···H3 2.3600
C18···C16i 3.587 (2) H11B···Cl1vi 3.1400
C19···N3iv 3.271 (2) H14···O1 2.6400
C19···Cl1 3.3776 (16) H15···C19xii 3.0800
C19···C19iv 3.538 (2) H15···N1xiii 2.8000
C1···H10Aiii 2.9700 H16···Cl1i 3.1300
C2···H10Aiii 2.8900 H17···C10xiv 2.9800
C3···H10Aiii 2.9100 H17···H10Bxiv 2.4900
C4···H10Aiii 3.0500 H19···Cl1 3.0400
C10···H17viii 2.9800 H19···H11A 2.2400
C12···H10Aiii 3.0700 H19···N3iv 2.5100
C14···H5ix 2.7700 H19···C19iv 3.0300
C15···H5ix 2.9600
C1—N1—C9 117.14 (12) C16—C17—C18 119.90 (17)
C11—N2—C12 118.32 (12) N3—C18—C13 121.98 (13)
C11—N2—C19 120.35 (12) N3—C18—C17 118.56 (14)
C12—N2—C19 121.18 (12) C13—C18—C17 119.46 (14)
C18—N3—C19 116.34 (13) N2—C19—N3 126.29 (14)
Cl1—C1—N1 115.34 (11) C2—C3—H3 119.00
Cl1—C1—C2 117.89 (11) C4—C3—H3 119.00
N1—C1—C2 126.78 (14) C4—C5—H5 119.00
C1—C2—C3 115.35 (13) C6—C5—H5 119.00
C1—C2—C11 123.66 (13) C6—C7—H7 119.00
C3—C2—C11 120.99 (13) C8—C7—H7 119.00
C2—C3—C4 121.45 (13) C7—C8—H8 120.00
C3—C4—C5 123.08 (13) C9—C8—H8 120.00
C3—C4—C9 117.63 (13) C6—C10—H10A 110.00
C5—C4—C9 119.29 (13) C6—C10—H10B 109.00
C4—C5—C6 121.62 (13) C6—C10—H10C 109.00
C5—C6—C7 118.00 (14) H10A—C10—H10B 109.00
C5—C6—C10 121.23 (14) H10A—C10—H10C 109.00
C7—C6—C10 120.78 (14) H10B—C10—H10C 109.00
C6—C7—C8 121.94 (14) N2—C11—H11A 109.00
C7—C8—C9 120.39 (14) N2—C11—H11B 109.00
N1—C9—C4 121.65 (13) C2—C11—H11A 109.00
N1—C9—C8 119.58 (12) C2—C11—H11B 109.00
C4—C9—C8 118.76 (13) H11A—C11—H11B 108.00
N2—C11—C2 112.79 (12) C13—C14—H14 120.00
O1—C12—N2 120.49 (14) C15—C14—H14 120.00
O1—C12—C13 125.83 (14) C14—C15—H15 120.00
N2—C12—C13 113.67 (12) C16—C15—H15 120.00
C12—C13—C14 120.61 (14) C15—C16—H16 120.00
C12—C13—C18 119.82 (13) C17—C16—H16 120.00
C14—C13—C18 119.57 (14) C16—C17—H17 120.00
C13—C14—C15 120.08 (16) C18—C17—H17 120.00
C14—C15—C16 120.32 (17) N2—C19—H19 117.00
C15—C16—C17 120.62 (19) N3—C19—H19 117.00
C9—N1—C1—Cl1 −179.80 (10) C3—C4—C9—N1 −0.4 (2)
C9—N1—C1—C2 0.3 (2) C3—C4—C9—C8 178.79 (13)
C1—N1—C9—C4 0.4 (2) C5—C4—C9—N1 −179.72 (13)
C1—N1—C9—C8 −178.82 (13) C5—C4—C9—C8 −0.5 (2)
C12—N2—C11—C2 −69.62 (16) C4—C5—C6—C7 0.0 (2)
C19—N2—C11—C2 114.68 (14) C4—C5—C6—C10 179.76 (14)
C11—N2—C12—O1 −4.0 (2) C5—C6—C7—C8 −0.5 (2)
C11—N2—C12—C13 174.94 (12) C10—C6—C7—C8 179.74 (15)
C19—N2—C12—O1 171.64 (13) C6—C7—C8—C9 0.5 (2)
C19—N2—C12—C13 −9.40 (18) C7—C8—C9—N1 179.26 (14)
C11—N2—C19—N3 −179.97 (14) C7—C8—C9—C4 0.1 (2)
C12—N2—C19—N3 4.5 (2) O1—C12—C13—C14 7.1 (2)
C19—N3—C18—C13 −2.9 (2) O1—C12—C13—C18 −172.61 (14)
C19—N3—C18—C17 176.95 (14) N2—C12—C13—C14 −171.76 (13)
C18—N3—C19—N2 2.1 (2) N2—C12—C13—C18 8.50 (19)
Cl1—C1—C2—C3 179.26 (11) C12—C13—C14—C15 −179.62 (14)
Cl1—C1—C2—C11 −1.6 (2) C18—C13—C14—C15 0.1 (2)
N1—C1—C2—C3 −0.8 (2) C12—C13—C18—N3 −2.7 (2)
N1—C1—C2—C11 178.31 (14) C12—C13—C18—C17 177.48 (13)
C1—C2—C3—C4 0.7 (2) C14—C13—C18—N3 177.54 (13)
C11—C2—C3—C4 −178.43 (14) C14—C13—C18—C17 −2.3 (2)
C1—C2—C11—N2 −75.60 (18) C13—C14—C15—C16 1.7 (2)
C3—C2—C11—N2 103.49 (16) C14—C15—C16—C17 −1.3 (3)
C2—C3—C4—C5 179.10 (14) C15—C16—C17—C18 −0.9 (3)
C2—C3—C4—C9 −0.2 (2) C16—C17—C18—N3 −177.16 (15)
C3—C4—C5—C6 −178.76 (14) C16—C17—C18—C13 2.7 (2)
C9—C4—C5—C6 0.5 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y, −z+2; (iv) −x+2, −y+1, −z+2; (v) x+1, −y+1/2, z+1/2; (vi) x, −y+1/2, z−1/2; (vii) −x+2, −y, −z+2; (viii) x, y−1, z; (ix) −x+1, y+1/2, −z+3/2; (x) x+1, y, z; (xi) −x+1, y−1/2, −z+3/2; (xii) x−1, y, z; (xiii) x−1, −y+1/2, z−1/2; (xiv) x, y+1, z.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1–C4/C9 and N2/N3/C12/C13/C18/C19 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C19—H19···N3iv 0.93 2.51 3.271 (2) 139
C8—H8···Cg2ii 0.93 2.89 3.6598 (16) 142
C10—H10A···Cg1iii 0.96 2.68 3.5189 (17) 146

Symmetry codes: (iv) −x+2, −y+1, −z+2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2276).

References

  1. Abdel-Hamide, S. G., El-Hakim, A. E. & El-Helby, A. A. (1996). Az. J. Pharm. Sci.17, 35–40.
  2. Bekhit, A. A. & Khalil, M. A. (1998). Pharmazie, 53, 539–543. [PubMed]
  3. Chapman, N. B., Clarke, K. & Wilson, K. (1963). J. Chem. Soc. pp. 2256–2266.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Honda, G., Tabata, M. & Tsuda, M. (1979). Planta Med.37, 172–174. [DOI] [PubMed]
  7. Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200. [DOI] [PMC free article] [PubMed]
  8. Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201. [DOI] [PMC free article] [PubMed]
  9. Khan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2686. [DOI] [PMC free article] [PubMed]
  10. Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  11. Roopan, S. M. & Khan, F. N. (2008b). Indian J. Heterocycl. Chem.18, 183–184.
  12. Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161–169.
  13. Roopan, S. M., Khan, F. N. & Maiyalagan, T. (2008a). Can. J. Chem.86 , 1019–1025.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020830/gk2276sup1.cif

e-66-o1545-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020830/gk2276Isup2.hkl

e-66-o1545-Isup2.hkl (149.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES