Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 5;66(Pt 7):o1533. doi: 10.1107/S1600536810019811

N-[4-Cyano-3-(trifluoro­meth­yl)phen­yl]-2-eth­oxy­benzamide

S Naveen a, Basappa b, H R Manjunath c, M A Sridhar c,*, J Shashidhara Prasad c, K S Rangappa b
PMCID: PMC3006830  PMID: 21587782

Abstract

In the title compound, C17H13F3N2O2, the two aromatic rings are essentially coplanar, forming a dihedral angle of 2.78 (12)°. The non-H atoms of the eth­oxy group are coplanar with the attached ring [maximum deviation = 0.271 (3) Å]. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯N and C—H⋯F hydrogen bonds.

Related literature

For background to the biological activity of ethoxy­benzamides, see: Mantelingu et al. (2007). For related structures, see: Ma et al. (2009); Saeed et al. (2010). graphic file with name e-66-o1533-scheme1.jpg

Experimental

Crystal data

  • C17H13F3N2O2

  • M r = 334.29

  • Monoclinic, Inline graphic

  • a = 10.5010 (13) Å

  • b = 12.8830 (16) Å

  • c = 11.6130 (14) Å

  • β = 101.653 (6)°

  • V = 1538.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.32 × 0.30 × 0.27 mm

Data collection

  • MacScience DIPLabo 32001 diffractometer

  • 5043 measured reflections

  • 2704 independent reflections

  • 1896 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.176

  • S = 1.02

  • 2704 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810019811/wn2389sup1.cif

e-66-o1533-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019811/wn2389Isup2.hkl

e-66-o1533-Isup2.hkl (132.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H1⋯O15 0.96 1.82 2.661 (2) 145
C1—H16⋯N19i 0.96 2.47 3.377 (3) 157
C13—H18⋯F23ii 0.96 2.50 3.365 (3) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the DST and Government of India project SP/I2/FOO/93, also the University of Mysore, Mysore for financial assistance. HRM thanks the UGC-BRS and the University of Mysore for the award of a fellowship.

supplementary crystallographic information

Comment

Histone acetyl transfereses (HAT) are enzymes that acetylate conserved lysine amino acids on histone proteins by transferring the acetyl group from acetyl CoA to form ε-N-acetyl lysine. HAT functions to promote transcriptional activation and has significant histone acetyl transferase activity with core histones (H3 and H4), and also with nucleosome core particles. In addition, HAT inhibits cell-cycle progression and counteracts the mitogenic activity of the adenoviral oncoprotein E1A. A literature survey revealed that the small molecule KCN weakly activated the p300 histone acetyl transferase (Mantelingu et al. 2007). With this background, the title compound was synthesized and we report its crystal structure here.

A perspective view of the title compound is shown in Fig. 1. The bond lengths and bond angles are normal and are comparable with values reported earlier for N-(3,4-diethoxyphenyl)acetamide (Ma et al. 2009). The dihedral angle between the two aromatic rings is 2.78 (12)°, indicating that the two aromatic rings are essentially coplanar. This value differs from the value of 55.69 (3)° reported earlier (Saeed et al. 2010). The carbamide group connecting the two rings is -anti-periplanar, as indicated by the torsion angle value of -177.2 (2)° for C5—N7—C8—C9. The non-H atoms of the ethoxy group lie within the plane of the aromatic ring, as confirmed by the torsion angle value of 174.3 (2)° for C14—O15—C16—C17. In the crystal structure, the molecules exhibit both intramolecular N—H···O and intermolecular hydrogen bonds of the type C—H···N and C—H···F. The molecules exhibit layered stacking when viewed down the b axis, as shown in Fig. 2.

Experimental

N-(4-Cyano-3-(trifluoromethyl)phenyl)-2-ethoxybenzamide was synthesized according to the procedure reported earlier (Mantelingu et al. 2007). The final product was obtained by crystallization using methanol as solvent. Slow evaporation of the solvent yielded colorless crystals after three days.

Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C—H and N—H distances set equal to 0.96 Å; Uiso(H) = 1.2Ueq(carrier atom) for all H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Packing diagram of the molecules, viewed down the b axis. The dashed lines represent hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

Crystal data

C17H13F3N2O2 Z = 4
Mr = 334.29 F(000) = 688
Monoclinic, P21/n Dx = 1.443 Mg m3
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 10.5010 (13) Å µ = 0.12 mm1
b = 12.8830 (16) Å T = 293 K
c = 11.6130 (14) Å Block, colorless
β = 101.653 (6)° 0.32 × 0.30 × 0.27 mm
V = 1538.7 (3) Å3

Data collection

MacScience DIPLabo 32001 diffractometer 1896 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
graphite θmax = 25.0°, θmin = 2.4°
Detector resolution: 10.0 pixels mm-1 h = −12→12
ω scan k = −15→15
5043 measured reflections l = −13→13
2704 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1179P)2] where P = (Fo2 + 2Fc2)/3
2704 reflections (Δ/σ)max = 0.001
217 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N7 0.87506 (17) 0.12966 (13) 0.60529 (15) 0.0493 (5)
H1 0.8991 0.0685 0.6519 0.059*
O24 0.7968 (2) 0.17185 (12) 0.41408 (15) 0.0740 (6)
O15 0.89269 (17) −0.07252 (11) 0.65288 (15) 0.0610 (5)
F21 0.75451 (17) 0.57018 (11) 0.62234 (16) 0.0844 (5)
F22 0.79874 (19) 0.49654 (12) 0.47046 (14) 0.0996 (7)
C6 0.9373 (2) 0.23273 (17) 0.7779 (2) 0.0566 (6)
H6 0.9602 0.1701 0.8220 0.068*
C14 0.8480 (2) −0.09241 (16) 0.5358 (2) 0.0513 (6)
C5 0.8896 (2) 0.22760 (15) 0.6581 (2) 0.0474 (5)
C9 0.8176 (2) −0.00775 (16) 0.45831 (19) 0.0489 (5)
C2 0.9212 (2) 0.41873 (16) 0.7744 (2) 0.0537 (6)
C8 0.8285 (2) 0.10574 (17) 0.4903 (2) 0.0501 (6)
F23 0.94844 (17) 0.57372 (11) 0.59172 (17) 0.0881 (6)
C10 0.7724 (2) −0.0286 (2) 0.3392 (2) 0.0608 (6)
H13 0.7506 0.0277 0.2847 0.073*
C4 0.8589 (2) 0.31994 (16) 0.5946 (2) 0.0516 (6)
H14 0.8274 0.3167 0.5111 0.062*
C18 0.9345 (2) 0.51680 (19) 0.8361 (2) 0.0638 (6)
C1 0.9528 (2) 0.32671 (18) 0.8361 (2) 0.0602 (6)
H16 0.9846 0.3279 0.9196 0.072*
C3 0.8748 (2) 0.41397 (16) 0.6531 (2) 0.0519 (6)
C13 0.8323 (3) −0.19283 (18) 0.4910 (2) 0.0645 (7)
H18 0.8507 −0.2510 0.5433 0.077*
N19 0.9424 (3) 0.59476 (17) 0.8833 (2) 0.0817 (7)
C20 0.8439 (3) 0.51243 (18) 0.5837 (2) 0.0641 (7)
C16 0.9363 (3) −0.15806 (18) 0.7317 (2) 0.0650 (7)
H21A 0.8635 −0.2019 0.7358 0.078*
H21B 1.0002 −0.1970 0.7014 0.078*
C11 0.7590 (3) −0.1291 (2) 0.2959 (2) 0.0684 (7)
H22 0.7290 −0.1410 0.2133 0.082*
C12 0.7889 (3) −0.2104 (2) 0.3733 (3) 0.0699 (7)
H23 0.7802 −0.2804 0.3444 0.084*
C17 0.9919 (3) −0.1132 (2) 0.8500 (2) 0.0771 (8)
H24A 1.0226 −0.1674 0.9054 0.092*
H24B 0.9264 −0.0736 0.8771 0.092*
H24C 1.0631 −0.0686 0.8426 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N7 0.0650 (11) 0.0285 (9) 0.0529 (11) 0.0026 (8) 0.0082 (8) 0.0020 (7)
O24 0.1173 (15) 0.0391 (9) 0.0591 (11) 0.0047 (9) 0.0021 (10) 0.0044 (8)
O15 0.0839 (11) 0.0346 (8) 0.0620 (11) 0.0028 (8) 0.0085 (8) 0.0058 (7)
F21 0.0949 (11) 0.0477 (9) 0.1143 (14) 0.0226 (8) 0.0300 (10) 0.0033 (8)
F22 0.1628 (18) 0.0520 (9) 0.0731 (11) 0.0248 (10) −0.0023 (10) 0.0071 (8)
C6 0.0748 (15) 0.0384 (12) 0.0545 (14) 0.0010 (11) 0.0080 (11) 0.0026 (10)
C14 0.0574 (13) 0.0365 (11) 0.0605 (14) −0.0025 (9) 0.0134 (10) −0.0019 (9)
C5 0.0554 (12) 0.0329 (10) 0.0547 (13) −0.0006 (9) 0.0129 (9) −0.0007 (9)
C9 0.0533 (12) 0.0353 (11) 0.0585 (14) 0.0004 (9) 0.0118 (10) −0.0014 (10)
C2 0.0624 (13) 0.0408 (12) 0.0594 (15) −0.0033 (10) 0.0159 (11) −0.0071 (10)
C8 0.0585 (13) 0.0361 (11) 0.0557 (14) 0.0011 (9) 0.0117 (10) 0.0022 (10)
F23 0.1009 (12) 0.0474 (8) 0.1229 (15) −0.0056 (8) 0.0386 (10) 0.0167 (8)
C10 0.0701 (15) 0.0484 (13) 0.0618 (15) −0.0015 (11) 0.0080 (11) −0.0035 (11)
C4 0.0682 (14) 0.0342 (11) 0.0521 (13) 0.0048 (10) 0.0116 (10) −0.0004 (9)
C18 0.0779 (16) 0.0476 (14) 0.0669 (15) −0.0019 (12) 0.0174 (12) −0.0099 (12)
C1 0.0761 (16) 0.0492 (13) 0.0534 (13) −0.0027 (11) 0.0084 (11) −0.0021 (11)
C3 0.0587 (13) 0.0338 (11) 0.0657 (15) 0.0021 (9) 0.0187 (11) 0.0008 (10)
C13 0.0798 (16) 0.0325 (11) 0.0818 (18) −0.0040 (11) 0.0178 (13) −0.0010 (11)
N19 0.110 (2) 0.0529 (13) 0.0824 (17) −0.0022 (12) 0.0193 (14) −0.0211 (12)
C20 0.0848 (17) 0.0377 (12) 0.0706 (17) 0.0092 (12) 0.0173 (13) −0.0013 (11)
C16 0.0742 (15) 0.0465 (13) 0.0750 (17) 0.0069 (12) 0.0167 (13) 0.0178 (12)
C11 0.0798 (17) 0.0554 (15) 0.0681 (16) −0.0080 (13) 0.0105 (13) −0.0169 (13)
C12 0.0812 (17) 0.0438 (13) 0.086 (2) −0.0117 (12) 0.0192 (14) −0.0166 (13)
C17 0.0840 (18) 0.0718 (18) 0.0721 (18) 0.0127 (15) 0.0080 (14) 0.0129 (14)

Geometric parameters (Å, °)

N7—C8 1.362 (3) F23—C20 1.340 (3)
N7—C5 1.398 (3) C10—C11 1.386 (3)
N7—H1 0.9600 C10—H13 0.9600
O24—C8 1.225 (3) C4—C3 1.382 (3)
O15—C14 1.370 (3) C4—H14 0.9598
O15—C16 1.447 (3) C18—N19 1.139 (3)
F21—C20 1.344 (3) C1—H16 0.9599
F22—C20 1.321 (3) C3—C20 1.503 (3)
C6—C1 1.380 (3) C13—C12 1.370 (4)
C6—C5 1.381 (3) C13—H18 0.9600
C6—H6 0.9600 C16—C17 1.496 (4)
C14—C13 1.392 (3) C16—H21A 0.9600
C14—C9 1.409 (3) C16—H21B 0.9599
C5—C4 1.403 (3) C11—C12 1.374 (4)
C9—C10 1.395 (3) C11—H22 0.9600
C9—C8 1.507 (3) C12—H23 0.9601
C2—C1 1.390 (3) C17—H24A 0.9600
C2—C3 1.395 (3) C17—H24B 0.9600
C2—C18 1.445 (3) C17—H24C 0.9600
C8—N7—C5 128.36 (18) C2—C1—H16 120.3
C8—N7—H1 111.7 C4—C3—C2 121.2 (2)
C5—N7—H1 120.0 C4—C3—C20 119.0 (2)
C14—O15—C16 119.14 (18) C2—C3—C20 119.9 (2)
C1—C6—C5 121.2 (2) C12—C13—C14 121.1 (2)
C1—C6—H6 118.9 C12—C13—H18 119.2
C5—C6—H6 119.9 C14—C13—H18 119.7
O15—C14—C13 122.4 (2) F22—C20—F23 106.6 (2)
O15—C14—C9 118.49 (19) F22—C20—F21 106.5 (2)
C13—C14—C9 119.1 (2) F23—C20—F21 105.6 (2)
C6—C5—N7 118.07 (19) F22—C20—C3 113.5 (2)
C6—C5—C4 119.1 (2) F23—C20—C3 112.1 (2)
N7—C5—C4 122.8 (2) F21—C20—C3 112.2 (2)
C10—C9—C14 118.1 (2) O15—C16—C17 107.6 (2)
C10—C9—C8 115.14 (19) O15—C16—H21A 109.1
C14—C9—C8 126.7 (2) C17—C16—H21A 110.4
C1—C2—C3 118.8 (2) O15—C16—H21B 108.7
C1—C2—C18 120.0 (2) C17—C16—H21B 111.5
C3—C2—C18 121.2 (2) H21A—C16—H21B 109.5
O24—C8—N7 122.9 (2) C12—C11—C10 118.8 (2)
O24—C8—C9 120.1 (2) C12—C11—H22 121.2
N7—C8—C9 117.08 (18) C10—C11—H22 120.1
C11—C10—C9 122.0 (2) C13—C12—C11 120.9 (2)
C11—C10—H13 118.2 C13—C12—H23 119.5
C9—C10—H13 119.8 C11—C12—H23 119.7
C3—C4—C5 119.5 (2) C16—C17—H24A 110.5
C3—C4—H14 121.1 C16—C17—H24B 109.5
C5—C4—H14 119.4 H24A—C17—H24B 109.5
N19—C18—C2 178.5 (3) C16—C17—H24C 108.4
C6—C1—C2 120.2 (2) H24A—C17—H24C 109.5
C6—C1—H16 119.4 H24B—C17—H24C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N7—H1···O15i 0.96 1.82 2.661 (2) 145
C1—H16···N19i 0.96 2.47 3.377 (3) 157
C13—H18···F23ii 0.96 2.50 3.365 (3) 150

Symmetry codes: i; (i) −x+2, −y+1, −z+2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2389).

References

  1. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  2. Ma, P.-H., Zhou, K.-Z., Sun, M.-L., Zhao, X.-M. & Xiao, X. (2009). Acta Cryst. E65, o1314. [DOI] [PMC free article] [PubMed]
  3. MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
  4. Mantelingu, K., Kishore, A. H., Balasubramanyam, K., Kumar, G. V., Altaf, M., Swamy, S. N., Selvi, R., Das, C., Narayana, C., Rangappa, K. S. & Kundu, T. K. (2007). J. Phys. Chem. B, 111, 4527–4534. [DOI] [PubMed]
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Saeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o911–o912. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810019811/wn2389sup1.cif

e-66-o1533-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019811/wn2389Isup2.hkl

e-66-o1533-Isup2.hkl (132.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES