Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 26;66(Pt 7):o1792. doi: 10.1107/S1600536810018520

(Z)-2-Amino-5-[2,4-dimeth­oxy-6-(4-methoxy­styr­yl)benzyl­idene]-1,3-thia­zol-4(5H)-one methanol solvate

Nikhil Reddy Madadi a, Thirupathi Reddy Yerram Reddy a, Narsimha Reddy Penthala a, Sean Parkin b, Peter A Crooks a,*
PMCID: PMC3006841  PMID: 21588002

Abstract

In the crystal structure of the title compound, C21H20N2O4S·CH3OH, mol­ecules are linked into chains by a series of inter­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds. The mol­ecular structure shows a double bond with Z geometry, connecting the thia­zolone and resveratrol units. The dihedral angle between the thiazolone ring and the nearest dimethoxy­benzene ring is 53.02 (7)°.

Related literature

For related structure–activitystudies, see; Aggarwal et al. (2004); Pettit et al. (1995); Cushman et al. (1991).graphic file with name e-66-o1792-scheme1.jpg

Experimental

Crystal data

  • C21H20N2O4S·CH4O

  • M r = 428.49

  • Monoclinic, Inline graphic

  • a = 10.6243 (2) Å

  • b = 22.2530 (5) Å

  • c = 9.0562 (2) Å

  • β = 93.028 (1)°

  • V = 2138.10 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.65 mm−1

  • T = 90 K

  • 0.15 × 0.08 × 0.02 mm

Data collection

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.777, T max = 0.968

  • 31098 measured reflections

  • 3911 independent reflections

  • 3631 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.112

  • S = 1.13

  • 3911 reflections

  • 276 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018520/fj2286sup1.cif

e-66-o1792-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018520/fj2286Isup2.hkl

e-66-o1792-Isup2.hkl (191.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.88 2.07 2.926 (2) 163
N2—H2A⋯N1i 0.88 2.64 3.175 (2) 120
N2—H2B⋯O1Sii 0.88 2.05 2.872 (2) 154
O1S—H1S⋯O4 0.84 1.88 2.716 (2) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This investigation was supported by NIH/National Cancer Institute grant PO1 CA104457 (PAC) and by NSF MRI grant CHE 0319176 (SP).

supplementary crystallographic information

Comment

Many natural products possessing a trimethoxybenzene ring, e.g., colchicines, and podophyllotoxins, are potent cytotoxic agents and exert their antitumor properties by their antitubulin activity. In view of the activity of such trimethoxybenzenes, similar structurally related stilbene moieties have been studied. The trihydroxy compound, resveratrol, a naturally occurring phytoalexin (trans-3, 4, 5-trihydroxystilbene) present in grapes, berries, peanuts,and red wine [Aggarwal et al.,2004, Pettit et al., 1995) is reported to be a potential cancer chemotherapeutic agent based on its striking inhibitory effects on cellular events associated with cancer initiation, promotion, and progression. (Cushman et al., 1991). These observations encouraged us to design and synthesise a series of novel trimethoxy resveratrol analogs that were expected to function as potent cytotoxic agents against lung and breast cancer cells. The structural characterization of the title compound by x-ray analysis was performed to determine the geometry (E vs Z) of the double bond connecting the thiozolone ring and the resveratrol moiety, which cannot be easily determined by NMR spectroscopic analysis, and to obtain detailed information on the structural conformation of the molecule, that may be useful in structure-activity relationship (SAR) analysis. The title compound was synthesized in two steps. In step one, the formylation of (E)-1, 3-dimethoxy-5- (4-methoxystyryl)benzene with a slight excess of phosphorous oxychloride in dimethylformamide at 0 °C resulted the formation of trans-2-formyl-3, 4', 5-trimethoxystilbene. In step two, the reaction of trans-2-formyl-3, 4', 5-trimethoxystilbene with the active methelene compound, 2-aminothiazol-4(5H)-one in presence of ammonium acetate in acetic acid under microwave irradiation conditions yielded the title compound, (Z)-2-amino-5-[2,4-dimethoxy-6- (4-methoxystyryl)benzylidene]thiazol-4(5H)-one in 90% yield. The x-ray analysis studies revealed that the double bond connecting the thiazolone and resveratrol moieties has the Z geometry. The dihedral angle between the plane of the thiazolone ring and the plane of the nearest phenyl ring is 53.02 (7)°. The crystal packing is stabilized by a series of N—H···O, N—H···N and O—H···O intermolecular hydrogen bonds.

Experimental

A mixture of trans-2-formyl-3,4',5-trimethoxystilbene (50 mg, 1 mmol), 2-aminothiazol-4(5H)-one (20.44 mg, 1.1 mmol), ammonium acetate (13.56 mg, 1.1 mmol) and acetic acid (0.25 ml) was irradiated in a domestic microwave oven for 60 sec with intermittent cooling to room temperature every 20 sec. The reaction mixture was allowed to cool to room temperature, and treated with saturated aqueous sodium bicarbonate solution. The precipitate thus obtained was collected by filtration, washed with cold water and dried, to afford the crude product. Crystallization from methanol gave a white crystalline product of (Z)-2-amino-5-[2,4-dimethoxy-6-(4-methoxystyryl) benzylidene]thiazol-4(5H)-one methanolate, which was suitable for x-ray analysis. 1H NMR (DMSO-d6): δ 3.77 (s, 3H, -OCH3), 3.82 (s, 3H, -OCH3), 3.86 (s, 3H, -OCH3), 6.54-6.55 (d, J=2 Hz, 1H), 6.90-6.91 (m, 1H), 6.93-6.95 (d, J=2 Hz, 3H), 7.20-7.23 (d, J=16 Hz, 1H), 7.47-7.49 (d, J=9 Hz, 2H), 7.61 (s, 1H), 8.83 (s, 1H), 9.12 (s, 1H) ppm. 13C NMR (DMSO-d6): δ 55.6, 55.9, 56.3, 98.1, 102.8, 114.9, 115.9, 124.2,125.7, 128.6, 130.2, 131.6, 134.6, 138.4, 150.5, 158.9, 159.9, 161.6, 176.6, 180.3, 181.3. M. P: 172-175 °C

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.95 Å (CArH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

Figures

Fig. 1.

Fig. 1.

A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C21H20N2O4S·CH4O F(000) = 904
Mr = 428.49 Dx = 1.331 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 9054 reflections
a = 10.6243 (2) Å θ = 4.0–68.4°
b = 22.2530 (5) Å µ = 1.65 mm1
c = 9.0562 (2) Å T = 90 K
β = 93.028 (1)° Lath, yellow
V = 2138.10 (8) Å3 0.15 × 0.08 × 0.02 mm
Z = 4

Data collection

Bruker X8 Proteum diffractometer 3911 independent reflections
Radiation source: fine-focus rotating anode 3631 reflections with I > 2σ(I)
graded multilayer optics Rint = 0.044
Detector resolution: 5.6 pixels mm-1 θmax = 68.4°, θmin = 4.0°
φ and ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2006) k = −26→26
Tmin = 0.777, Tmax = 0.968 l = −10→10
31098 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0357P)2 + 2.3067P] where P = (Fo2 + 2Fc2)/3
3911 reflections (Δ/σ)max < 0.001
276 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.73380 (5) 0.59495 (2) 0.83763 (5) 0.02575 (15)
O1 0.84106 (14) 0.45171 (6) 0.46089 (17) 0.0294 (3)
N1 0.79198 (16) 0.69625 (7) 0.70367 (18) 0.0233 (4)
C1 0.67303 (19) 0.48654 (9) 0.5941 (2) 0.0230 (4)
O2 0.56944 (16) 0.31027 (7) 0.6733 (2) 0.0401 (4)
N2 0.78786 (18) 0.70133 (8) 0.95934 (19) 0.0288 (4)
H2A 0.8067 0.7398 0.9591 0.035*
H2B 0.7766 0.6828 1.0435 0.035*
C2 0.73882 (19) 0.43671 (9) 0.5382 (2) 0.0247 (4)
O3 0.15908 (16) 0.72923 (7) 1.04700 (19) 0.0379 (4)
C3 0.7014 (2) 0.37874 (9) 0.5646 (2) 0.0287 (5)
H3 0.7459 0.3457 0.5260 0.034*
O4 0.79309 (15) 0.66720 (6) 0.46217 (15) 0.0276 (3)
C4 0.5968 (2) 0.36913 (9) 0.6495 (2) 0.0285 (5)
C5 0.5283 (2) 0.41643 (9) 0.7024 (2) 0.0254 (4)
H5 0.4560 0.4090 0.7571 0.031*
C6 0.56614 (19) 0.47574 (9) 0.6748 (2) 0.0227 (4)
C7 0.49002 (19) 0.52638 (9) 0.7237 (2) 0.0230 (4)
H7 0.4958 0.5629 0.6702 0.028*
C8 0.41358 (19) 0.52599 (9) 0.8360 (2) 0.0252 (4)
H8 0.4032 0.4890 0.8861 0.030*
C9 0.34427 (19) 0.57835 (9) 0.8881 (2) 0.0249 (4)
C10 0.2585 (2) 0.57198 (10) 0.9977 (2) 0.0280 (5)
H10 0.2434 0.5330 1.0359 0.034*
C11 0.1938 (2) 0.62079 (10) 1.0535 (2) 0.0296 (5)
H11 0.1356 0.6150 1.1283 0.036*
C12 0.2153 (2) 0.67762 (10) 0.9992 (2) 0.0296 (5)
C13 0.2998 (2) 0.68532 (10) 0.8890 (3) 0.0363 (5)
H13 0.3138 0.7243 0.8502 0.044*
C14 0.3634 (2) 0.63662 (10) 0.8357 (3) 0.0325 (5)
H14 0.4219 0.6428 0.7614 0.039*
C15 0.71662 (18) 0.54678 (9) 0.5548 (2) 0.0223 (4)
H15 0.7306 0.5531 0.4533 0.027*
C16 0.73910 (19) 0.59395 (9) 0.6445 (2) 0.0224 (4)
C17 0.77662 (18) 0.65520 (9) 0.5932 (2) 0.0218 (4)
C18 0.77655 (19) 0.67159 (9) 0.8345 (2) 0.0227 (4)
C19 0.9131 (2) 0.40406 (10) 0.4010 (3) 0.0352 (5)
H19A 0.9469 0.3783 0.4815 0.053*
H19B 0.9829 0.4211 0.3480 0.053*
H19C 0.8590 0.3802 0.3326 0.053*
C20 0.4740 (2) 0.29656 (11) 0.7742 (3) 0.0427 (6)
H20A 0.4925 0.3177 0.8678 0.064*
H20B 0.4726 0.2531 0.7921 0.064*
H20C 0.3917 0.3095 0.7316 0.064*
C21 0.0789 (2) 0.72365 (12) 1.1677 (3) 0.0387 (6)
H21A 0.0098 0.6959 1.1407 0.058*
H21B 0.0443 0.7631 1.1909 0.058*
H21C 0.1276 0.7081 1.2543 0.058*
O1S 0.80228 (17) 0.61397 (7) 0.19308 (17) 0.0374 (4)
H1S 0.7956 0.6277 0.2787 0.056*
C1S 0.8883 (2) 0.56477 (11) 0.1984 (3) 0.0355 (5)
H1S1 0.9573 0.5731 0.2717 0.053*
H1S2 0.9226 0.5593 0.1009 0.053*
H1S3 0.8442 0.5281 0.2262 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0407 (3) 0.0184 (3) 0.0178 (3) −0.0068 (2) −0.0021 (2) 0.00092 (18)
O1 0.0325 (8) 0.0229 (7) 0.0330 (8) 0.0030 (6) 0.0050 (6) −0.0030 (6)
N1 0.0327 (9) 0.0184 (8) 0.0185 (8) −0.0006 (7) −0.0005 (7) 0.0005 (6)
C1 0.0286 (10) 0.0183 (10) 0.0215 (10) 0.0002 (8) −0.0055 (8) −0.0022 (8)
O2 0.0421 (9) 0.0152 (7) 0.0638 (12) −0.0006 (6) 0.0108 (8) 0.0004 (7)
N2 0.0457 (11) 0.0208 (9) 0.0196 (9) −0.0054 (8) −0.0004 (8) −0.0007 (7)
C2 0.0267 (10) 0.0236 (10) 0.0232 (10) 0.0020 (8) −0.0036 (8) −0.0015 (8)
O3 0.0432 (9) 0.0266 (8) 0.0448 (10) 0.0034 (7) 0.0121 (7) −0.0054 (7)
C3 0.0316 (11) 0.0203 (10) 0.0337 (12) 0.0045 (8) −0.0033 (9) −0.0026 (9)
O4 0.0431 (9) 0.0214 (7) 0.0185 (7) −0.0005 (6) 0.0018 (6) 0.0010 (5)
C4 0.0326 (11) 0.0160 (10) 0.0363 (12) −0.0020 (8) −0.0043 (9) 0.0008 (8)
C5 0.0273 (10) 0.0201 (10) 0.0284 (11) −0.0008 (8) −0.0032 (8) −0.0001 (8)
C6 0.0276 (10) 0.0184 (9) 0.0211 (10) 0.0008 (8) −0.0071 (8) −0.0023 (8)
C7 0.0264 (10) 0.0162 (9) 0.0256 (11) −0.0015 (8) −0.0059 (8) −0.0007 (8)
C8 0.0295 (11) 0.0190 (10) 0.0263 (11) −0.0028 (8) −0.0047 (8) 0.0000 (8)
C9 0.0279 (10) 0.0236 (10) 0.0227 (10) −0.0024 (8) −0.0028 (8) −0.0019 (8)
C10 0.0356 (11) 0.0236 (11) 0.0244 (11) −0.0031 (9) −0.0015 (9) 0.0018 (8)
C11 0.0312 (11) 0.0348 (12) 0.0230 (11) −0.0035 (9) 0.0022 (8) −0.0023 (9)
C12 0.0322 (11) 0.0238 (11) 0.0325 (12) 0.0008 (9) −0.0002 (9) −0.0076 (9)
C13 0.0440 (13) 0.0215 (11) 0.0446 (14) −0.0035 (10) 0.0121 (11) −0.0015 (10)
C14 0.0364 (12) 0.0229 (11) 0.0390 (13) −0.0042 (9) 0.0098 (10) −0.0040 (9)
C15 0.0259 (10) 0.0215 (10) 0.0192 (10) 0.0014 (8) −0.0020 (8) 0.0012 (8)
C16 0.0249 (10) 0.0188 (10) 0.0232 (10) −0.0005 (8) −0.0015 (8) 0.0023 (8)
C17 0.0252 (10) 0.0195 (10) 0.0206 (10) 0.0012 (8) −0.0010 (8) 0.0011 (8)
C18 0.0258 (10) 0.0186 (9) 0.0234 (10) −0.0023 (8) −0.0001 (8) −0.0017 (8)
C19 0.0337 (12) 0.0319 (12) 0.0401 (13) 0.0067 (10) 0.0038 (10) −0.0053 (10)
C20 0.0417 (14) 0.0210 (11) 0.0662 (18) −0.0025 (10) 0.0092 (12) 0.0090 (11)
C21 0.0366 (13) 0.0387 (13) 0.0413 (14) 0.0073 (10) 0.0058 (10) −0.0064 (11)
O1S 0.0644 (11) 0.0277 (8) 0.0199 (8) 0.0013 (8) 0.0020 (7) 0.0003 (6)
C1S 0.0409 (13) 0.0380 (13) 0.0275 (12) −0.0060 (10) 0.0017 (10) −0.0014 (10)

Geometric parameters (Å, °)

S1—C16 1.753 (2) C9—C10 1.390 (3)
S1—C18 1.765 (2) C9—C14 1.399 (3)
O1—C2 1.365 (3) C10—C11 1.394 (3)
O1—C19 1.431 (3) C10—H10 0.9500
N1—C18 1.324 (3) C11—C12 1.380 (3)
N1—C17 1.358 (3) C11—H11 0.9500
C1—C6 1.403 (3) C12—C13 1.388 (3)
C1—C2 1.418 (3) C13—C14 1.378 (3)
C1—C15 1.468 (3) C13—H13 0.9500
O2—C4 1.362 (3) C14—H14 0.9500
O2—C20 1.433 (3) C15—C16 1.341 (3)
N2—C18 1.310 (3) C15—H15 0.9500
N2—H2A 0.8800 C16—C17 1.501 (3)
N2—H2B 0.8800 C19—H19A 0.9800
C2—C3 1.375 (3) C19—H19B 0.9800
O3—C12 1.375 (3) C19—H19C 0.9800
O3—C21 1.426 (3) C20—H20A 0.9800
C3—C4 1.401 (3) C20—H20B 0.9800
C3—H3 0.9500 C20—H20C 0.9800
O4—C17 1.237 (2) C21—H21A 0.9800
C4—C5 1.380 (3) C21—H21B 0.9800
C5—C6 1.406 (3) C21—H21C 0.9800
C5—H5 0.9500 O1S—C1S 1.425 (3)
C6—C7 1.469 (3) O1S—H1S 0.8400
C7—C8 1.334 (3) C1S—H1S1 0.9800
C7—H7 0.9500 C1S—H1S2 0.9800
C8—C9 1.470 (3) C1S—H1S3 0.9800
C8—H8 0.9500
C16—S1—C18 88.54 (9) C14—C13—C12 120.2 (2)
C2—O1—C19 118.01 (17) C14—C13—H13 119.9
C18—N1—C17 111.41 (17) C12—C13—H13 119.9
C6—C1—C2 118.67 (18) C13—C14—C9 121.8 (2)
C6—C1—C15 123.84 (18) C13—C14—H14 119.1
C2—C1—C15 117.36 (18) C9—C14—H14 119.1
C4—O2—C20 118.05 (18) C16—C15—C1 128.05 (19)
C18—N2—H2A 120.0 C16—C15—H15 116.0
C18—N2—H2B 120.0 C1—C15—H15 116.0
H2A—N2—H2B 120.0 C15—C16—C17 124.40 (18)
O1—C2—C3 124.34 (19) C15—C16—S1 126.89 (16)
O1—C2—C1 114.37 (18) C17—C16—S1 108.69 (14)
C3—C2—C1 121.28 (19) O4—C17—N1 122.94 (18)
C12—O3—C21 117.11 (18) O4—C17—C16 123.11 (18)
C2—C3—C4 118.93 (19) N1—C17—C16 113.95 (17)
C2—C3—H3 120.5 N2—C18—N1 123.57 (18)
C4—C3—H3 120.5 N2—C18—S1 119.09 (15)
O2—C4—C5 123.9 (2) N1—C18—S1 117.32 (15)
O2—C4—C3 114.60 (19) O1—C19—H19A 109.5
C5—C4—C3 121.50 (19) O1—C19—H19B 109.5
C4—C5—C6 119.6 (2) H19A—C19—H19B 109.5
C4—C5—H5 120.2 O1—C19—H19C 109.5
C6—C5—H5 120.2 H19A—C19—H19C 109.5
C1—C6—C5 120.01 (18) H19B—C19—H19C 109.5
C1—C6—C7 119.95 (18) O2—C20—H20A 109.5
C5—C6—C7 119.97 (19) O2—C20—H20B 109.5
C8—C7—C6 126.26 (19) H20A—C20—H20B 109.5
C8—C7—H7 116.9 O2—C20—H20C 109.5
C6—C7—H7 116.9 H20A—C20—H20C 109.5
C7—C8—C9 125.10 (19) H20B—C20—H20C 109.5
C7—C8—H8 117.5 O3—C21—H21A 109.5
C9—C8—H8 117.5 O3—C21—H21B 109.5
C10—C9—C14 116.7 (2) H21A—C21—H21B 109.5
C10—C9—C8 120.47 (19) O3—C21—H21C 109.5
C14—C9—C8 122.80 (19) H21A—C21—H21C 109.5
C9—C10—C11 122.3 (2) H21B—C21—H21C 109.5
C9—C10—H10 118.9 C1S—O1S—H1S 109.5
C11—C10—H10 118.9 O1S—C1S—H1S1 109.5
C12—C11—C10 119.4 (2) O1S—C1S—H1S2 109.5
C12—C11—H11 120.3 H1S1—C1S—H1S2 109.5
C10—C11—H11 120.3 O1S—C1S—H1S3 109.5
O3—C12—C11 124.8 (2) H1S1—C1S—H1S3 109.5
O3—C12—C13 115.6 (2) H1S2—C1S—H1S3 109.5
C11—C12—C13 119.7 (2)
C19—O1—C2—C3 1.1 (3) C9—C10—C11—C12 −0.2 (3)
C19—O1—C2—C1 179.79 (18) C21—O3—C12—C11 4.0 (3)
C6—C1—C2—O1 179.80 (17) C21—O3—C12—C13 −175.4 (2)
C15—C1—C2—O1 3.9 (3) C10—C11—C12—O3 −178.8 (2)
C6—C1—C2—C3 −1.5 (3) C10—C11—C12—C13 0.6 (3)
C15—C1—C2—C3 −177.44 (19) O3—C12—C13—C14 178.5 (2)
O1—C2—C3—C4 178.09 (19) C11—C12—C13—C14 −1.0 (4)
C1—C2—C3—C4 −0.5 (3) C12—C13—C14—C9 1.0 (4)
C20—O2—C4—C5 −8.1 (3) C10—C9—C14—C13 −0.5 (3)
C20—O2—C4—C3 172.3 (2) C8—C9—C14—C13 −178.2 (2)
C2—C3—C4—O2 −178.10 (19) C6—C1—C15—C16 52.1 (3)
C2—C3—C4—C5 2.3 (3) C2—C1—C15—C16 −132.2 (2)
O2—C4—C5—C6 178.4 (2) C1—C15—C16—C17 −176.34 (19)
C3—C4—C5—C6 −2.0 (3) C1—C15—C16—S1 5.2 (3)
C2—C1—C6—C5 1.8 (3) C18—S1—C16—C15 179.4 (2)
C15—C1—C6—C5 177.43 (19) C18—S1—C16—C17 0.77 (14)
C2—C1—C6—C7 −175.00 (18) C18—N1—C17—O4 −176.10 (19)
C15—C1—C6—C7 0.7 (3) C18—N1—C17—C16 3.4 (2)
C4—C5—C6—C1 −0.1 (3) C15—C16—C17—O4 −1.8 (3)
C4—C5—C6—C7 176.70 (19) S1—C16—C17—O4 176.94 (16)
C1—C6—C7—C8 −157.3 (2) C15—C16—C17—N1 178.79 (19)
C5—C6—C7—C8 25.9 (3) S1—C16—C17—N1 −2.5 (2)
C6—C7—C8—C9 176.15 (18) C17—N1—C18—N2 179.14 (19)
C7—C8—C9—C10 174.4 (2) C17—N1—C18—S1 −2.8 (2)
C7—C8—C9—C14 −8.0 (3) C16—S1—C18—N2 179.25 (18)
C14—C9—C10—C11 0.1 (3) C16—S1—C18—N1 1.12 (17)
C8—C9—C10—C11 177.91 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O4i 0.88 2.07 2.926 (2) 163
N2—H2A···N1i 0.88 2.64 3.175 (2) 120
N2—H2B···O1Sii 0.88 2.05 2.872 (2) 154
O1S—H1S···O4 0.84 1.88 2.716 (2) 172

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2286).

References

  1. Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res.24, 2783–2840. [PubMed]
  2. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A. K., Lin, C. M. & Hamel, E. (1991). J. Med. Chem.34, 2579–2588. [DOI] [PubMed]
  4. Pettit, G. R., Singh, S. B., Boyd, M. R., Hamel, E., Pettit, R. K., Schmidt, J. M. & Hogan, F. (1995). J. Med. Chem.38, 1666–1672. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018520/fj2286sup1.cif

e-66-o1792-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018520/fj2286Isup2.hkl

e-66-o1792-Isup2.hkl (191.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES