Abstract
The asymmetric unit of the title CdII compound, [Cd(N3)2(C12H8N2)]n, contains a CdII atom, located on a twofold axis passing through the middle of the phenanthroline molecule, one azide ion and half of a 1,10-phenanthroline molecule. The CdII atom exhibits a distorted octahedral coordination including one chelating 1,10-phenanthroline ligand and four azide ligands. The crystal structure features chains along the c direction in which azide groups doubly bridge two adjacent CdII atoms in an end-on (EO) mode. Interchain π–π stacking interactions, with centroid–centroid separations of 3.408 (2) Å between the central aromatic rings of 1,10-phenanthroline molecules, lead to a supramolecular sheet parallel to the bc plane.
Related literature
For the structures of related metal-azido compounds, see: Goher et al. (2008 ▶); Ribas et al. (1999 ▶); Liu et al. (2007 ▶); Cano et al. (2005 ▶); Abu-Youssef et al. (2000 ▶); Bose et al. (2004 ▶); Mautner et al. (2010 ▶); Meyer et al. (2005 ▶); Gao et al. (2004 ▶).
Experimental
Crystal data
[Cd(N3)2(C12H8N2)]
M r = 376.67
Monoclinic,
a = 19.4591 (17) Å
b = 10.2988 (6) Å
c = 6.8151 (6) Å
β = 106.033 (4)°
V = 1312.66 (18) Å3
Z = 4
Mo Kα radiation
μ = 1.67 mm−1
T = 293 K
0.30 × 0.20 × 0.18 mm
Data collection
Rigaku Mercury CCD diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002 ▶) T min = 0.774, T max = 1.000
4185 measured reflections
1217 independent reflections
1133 reflections with I > 2σ(I)
R int = 0.023
Refinement
R[F 2 > 2σ(F 2)] = 0.020
wR(F 2) = 0.056
S = 1.05
1217 reflections
96 parameters
H-atom parameters constrained
Δρmax = 0.78 e Å−3
Δρmin = −0.48 e Å−3
Data collection: CrystalClear (Rigaku, 2002 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810019318/dn2567sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019318/dn2567Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
We gratefully acknowledge financial support from National Natural Science Foundation of China (20871115).
supplementary crystallographic information
Comment
Many compounds with uncommon magnetic properties have been widely investigated by using azido ligand, resulting from its rich coordination fashions (Ribas et al., 1999; Gao et al., 2004). The azido ligand exhibits a variety of bridging modes such as bi-dentate end-on (EO) and end-to-end (EE) bridging fashions (Liu et al., 2007; Cano et al., 2005; Goher et al., 2008; Mautner et al., 2010). A number of compounds with various structures have been obtained by introducing auxiliary ligands to the metal-azido system (Abu-Youssef et al., 2000; Bose et al., 2004; Meyer et al., 2005). The present example shows an infinite wavelike chain compound with 1,10-phenanthroline as an auxiliary ligand, [Cd(N3)2(C12H8N2)], in which azido ligand adopts the EO mode.
The asymmetric unit of the title compound contains half a CdII ion, one azido ion and half a 1,10-phenanthroline molecule (Fig. 1). The CdII ion exhibits a distorted octahedral geometry, coordinated by one chelating 1,10-phenanthroline ligand and four azido ligands with the end-on (EO) mode. The distances of Cd—N vary from 2.306 (2) to 2.411 (3) Å . The azido ligands doubly bridge neighbouring CdII centers in the EO fashion, yielding an infinite wave-like CdII-azido chain along the c direction with the shortest Cd···Cd separation being 3.764 (3) Å.
The adjacent CdII-azido chains are mediated by interchained π-π stacking interactions between the aromatic rings of 1,10-phenanthroline molecules, which arrange in the opposite direction alternatively. The centroid-to-centroid distance between the central rings of the phenanthroline is 3.408 (2)Å and the centroid-to-plane distance is 3.28 Å leading to a slippage of 0.936Å. This π-π stacking builts up a 2-D supramolecular layer parallel to the bc plane (Fig. 2).
Experimental
A mixture of Cd(NO3)2.4H2O (0.308 g, 1.00 mmol), NaN3 (0.065 g, 1.00 mmol), Na(3-cba) (0.085 g, 0.50 mmol 3-Hcba = 3-cyanobenzoate acid), 1,10-phenanthroline (0.099 g, 0.50 mmol) and H2O (8 ml) was placed in a Teflon-lined stainless container, and then heated at 453 K for 2 days, after cooled to room temperature for 2 days. Pale-yellow prism-shaped crystals of the title compound were obtained. IR peaks (KBr, cm-1): 2053 s, 2037 s h, 1589 w, 1515 w, 1425 w, 1333 w, 1284 w, 846 m, 772 w, 727 m, 656 w. A strong band around 2053 cm-1 indicates the presence of the azido group.
Refinement
Hydrogen atoms were allowed to ride on their respective parent atoms with C—H distances of 0.93 Å, and were included in the refinement with isotropic displacement parameters Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
View of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.[Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+1, -y+2, -z; (iii) x, -y+2, z+1/2; (iv) x, -y+2, z-1/2].
Fig. 2.
View of the 2-D layer structure of the title compound formed by 1-D CdII-azido chains linked through π-π stacking interactions (black dotted lines) between symetry related 1,10-phenanthroline molecules. Hydrogen atoms have been omitted for clarity.
Crystal data
| [Cd(N3)2(C12H8N2)] | F(000) = 736 |
| Mr = 376.67 | Dx = 1.906 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -C 2yc | Cell parameters from 1622 reflections |
| a = 19.4591 (17) Å | θ = 2.3–27.5° |
| b = 10.2988 (6) Å | µ = 1.67 mm−1 |
| c = 6.8151 (6) Å | T = 293 K |
| β = 106.033 (4)° | Prism, pale-yellow |
| V = 1312.66 (18) Å3 | 0.30 × 0.20 × 0.18 mm |
| Z = 4 |
Data collection
| Rigaku Mercury CCD diffractometer | 1217 independent reflections |
| Radiation source: fine-focus sealed tube | 1133 reflections with I > 2σ(I) |
| graphite | Rint = 0.023 |
| Detector resolution: 13.6612 pixels mm-1 | θmax = 25.5°, θmin = 3.6° |
| CCD_Profile_fitting scans | h = −23→22 |
| Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | k = −12→12 |
| Tmin = 0.774, Tmax = 1.000 | l = −8→8 |
| 4185 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.056 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0373P)2 + 0.2202P] where P = (Fo2 + 2Fc2)/3 |
| 1217 reflections | (Δ/σ)max = 0.001 |
| 96 parameters | Δρmax = 0.78 e Å−3 |
| 0 restraints | Δρmin = −0.48 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cd1 | 0.5000 | 0.922344 (19) | 0.2500 | 0.03485 (12) | |
| N1 | 0.43055 (13) | 1.0473 (2) | −0.0103 (3) | 0.0446 (5) | |
| N2 | 0.37375 (13) | 1.0889 (2) | −0.0144 (4) | 0.0459 (6) | |
| N3 | 0.31894 (16) | 1.1315 (4) | −0.0167 (6) | 0.0898 (10) | |
| N11 | 0.43063 (10) | 0.73525 (19) | 0.1345 (3) | 0.0367 (4) | |
| C11 | 0.36250 (14) | 0.7349 (3) | 0.0214 (4) | 0.0488 (6) | |
| H11A | 0.3404 | 0.8140 | −0.0213 | 0.059* | |
| C12 | 0.32340 (16) | 0.6220 (4) | −0.0352 (5) | 0.0587 (8) | |
| H12A | 0.2758 | 0.6260 | −0.1114 | 0.070* | |
| C13 | 0.35523 (17) | 0.5055 (3) | 0.0218 (4) | 0.0551 (8) | |
| H13A | 0.3293 | 0.4291 | −0.0144 | 0.066* | |
| C14 | 0.42742 (16) | 0.5003 (2) | 0.1357 (4) | 0.0447 (6) | |
| C15 | 0.46270 (13) | 0.6200 (2) | 0.1908 (3) | 0.0344 (5) | |
| C16 | 0.46560 (18) | 0.3819 (3) | 0.1969 (4) | 0.0552 (8) | |
| H16A | 0.4420 | 0.3032 | 0.1619 | 0.066* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cd1 | 0.03961 (17) | 0.03359 (16) | 0.02969 (16) | 0.000 | 0.00680 (11) | 0.000 |
| N1 | 0.0461 (13) | 0.0517 (11) | 0.0384 (12) | 0.0101 (11) | 0.0156 (10) | 0.0139 (10) |
| N2 | 0.0417 (14) | 0.0477 (13) | 0.0439 (13) | 0.0009 (10) | 0.0047 (10) | −0.0005 (9) |
| N3 | 0.0428 (16) | 0.116 (3) | 0.105 (3) | 0.0208 (18) | 0.0108 (16) | −0.008 (2) |
| N11 | 0.0368 (10) | 0.0410 (11) | 0.0332 (10) | 0.0009 (9) | 0.0109 (8) | −0.0043 (8) |
| C11 | 0.0405 (13) | 0.0601 (17) | 0.0449 (14) | 0.0015 (13) | 0.0099 (11) | −0.0113 (13) |
| C12 | 0.0430 (15) | 0.084 (2) | 0.0481 (16) | −0.0126 (16) | 0.0112 (13) | −0.0179 (16) |
| C13 | 0.0651 (19) | 0.0630 (18) | 0.0434 (15) | −0.0282 (16) | 0.0257 (14) | −0.0187 (13) |
| C14 | 0.0678 (18) | 0.0436 (14) | 0.0314 (12) | −0.0137 (12) | 0.0282 (13) | −0.0088 (10) |
| C15 | 0.0436 (13) | 0.0385 (11) | 0.0241 (11) | −0.0021 (11) | 0.0146 (10) | −0.0024 (9) |
| C16 | 0.099 (2) | 0.0354 (11) | 0.0409 (16) | −0.0135 (14) | 0.0363 (15) | −0.0077 (11) |
Geometric parameters (Å, °)
| Cd1—N1i | 2.303 (2) | C11—C12 | 1.385 (5) |
| Cd1—N1 | 2.303 (2) | C11—H11A | 0.9300 |
| Cd1—N11 | 2.3596 (19) | C12—C13 | 1.357 (5) |
| Cd1—N11i | 2.3596 (19) | C12—H12A | 0.9300 |
| Cd1—N1ii | 2.411 (2) | C13—C14 | 1.406 (4) |
| Cd1—N1iii | 2.411 (2) | C13—H13A | 0.9300 |
| N1—N2 | 1.179 (3) | C14—C15 | 1.410 (4) |
| N1—Cd1ii | 2.411 (2) | C14—C16 | 1.429 (4) |
| N2—N3 | 1.149 (4) | C15—C15i | 1.453 (5) |
| N11—C11 | 1.337 (3) | C16—C16i | 1.335 (7) |
| N11—C15 | 1.347 (3) | C16—H16A | 0.9300 |
| N1i—Cd1—N1 | 112.07 (12) | C11—N11—Cd1 | 125.41 (18) |
| N1i—Cd1—N11 | 150.83 (8) | C15—N11—Cd1 | 116.58 (15) |
| N1—Cd1—N11 | 92.25 (8) | N11—C11—C12 | 122.9 (3) |
| N1i—Cd1—N11i | 92.25 (8) | N11—C11—H11A | 118.5 |
| N1—Cd1—N11i | 150.83 (8) | C12—C11—H11A | 118.5 |
| N11—Cd1—N11i | 70.51 (9) | C13—C12—C11 | 119.4 (3) |
| N1i—Cd1—N1ii | 97.46 (8) | C13—C12—H12A | 120.3 |
| N1—Cd1—N1ii | 74.05 (9) | C11—C12—H12A | 120.3 |
| N11—Cd1—N1ii | 104.83 (8) | C12—C13—C14 | 119.9 (3) |
| N11i—Cd1—N1ii | 87.47 (7) | C12—C13—H13A | 120.0 |
| N1i—Cd1—N1iii | 74.05 (9) | C14—C13—H13A | 120.0 |
| N1—Cd1—N1iii | 97.46 (8) | C13—C14—C15 | 116.9 (3) |
| N11—Cd1—N1iii | 87.47 (7) | C13—C14—C16 | 123.6 (3) |
| N11i—Cd1—N1iii | 104.83 (8) | C15—C14—C16 | 119.5 (3) |
| N1ii—Cd1—N1iii | 165.09 (11) | N11—C15—C14 | 122.8 (2) |
| N2—N1—Cd1 | 124.66 (19) | N11—C15—C15i | 118.13 (13) |
| N2—N1—Cd1ii | 129.35 (18) | C14—C15—C15i | 119.09 (16) |
| Cd1—N1—Cd1ii | 105.95 (9) | C16i—C16—C14 | 121.41 (17) |
| N3—N2—N1 | 178.8 (3) | C16i—C16—H16A | 119.3 |
| C11—N11—C15 | 118.0 (2) | C14—C16—H16A | 119.3 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y+2, −z; (iii) x, −y+2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2567).
References
- Abu-Youssef, M. A. M., Escuer, A., Goher, M. A. S., Mautner, F. A., Reiss, G. J. & Vicente, R. (2000). Angew. Chem. Int. Ed.39, 1624–1626. [DOI] [PubMed]
- Bose, D., Rahaman, S. H., Mostafa, G., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2004). Polyhedron, 23, 545–552.
- Cano, J., Journaux, Y., Goher, M. A. S., Abu-Youssef, M. A. M., Mautner, F. A., Reiss, G. J., Escuer, A. & Vicente, R. (2005). New J. Chem.29, 306–314.
- Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z., Zhang, S.-W. & Yan, C.-H. (2004). Chem. Mater.16, 1590–1596.
- Goher, M. A. S., Mautner, F. A., Gatterer, K., Abu-Youssef, M. A. M., Badr, A. M. A., Sodin, B. & Gspan, C. (2008). J. Mol. Struct.876, 199–205.
- Liu, F.-C., Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Bu, X.-H., Ribas, J. & Cano, J. (2007). Inorg. Chem.46, 1520–1522. [DOI] [PubMed]
- Mautner, F. A., Egger, A., Sodin, B., Goher, M. A. S., Abu-Youssef, M. A. M., Massoud, A., Escuer, A. & Vicente, R. (2010). J. Mol. Struct.969, 192–196.
- Meyer, F., Demeshko, S., Leibeling, G., Kersting, B., Kaifer, E. & Pritzkow, H. (2005). Chem. Eur. J.11, 1518–1526. [DOI] [PubMed]
- Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev.193–195, 1027–1068.
- Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810019318/dn2567sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019318/dn2567Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


