Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 9;66(Pt 7):m758. doi: 10.1107/S1600536810019318

catena-Poly[di-μ1,1-azido-(1,10-phenanthroline)cadmium(II)]

Feng Chen a,b, Fa-Kun Zheng a,*, Guang-Ning Liu a,b, Mei-Feng Wu a,b, Guo-Cong Guo a
PMCID: PMC3006842  PMID: 21587693

Abstract

The asymmetric unit of the title CdII compound, [Cd(N3)2(C12H8N2)]n, contains a CdII atom, located on a twofold axis passing through the middle of the phenanthroline mol­ecule, one azide ion and half of a 1,10-phenanthroline mol­ecule. The CdII atom exhibits a distorted octa­hedral coordin­ation including one chelating 1,10-phenanthroline ligand and four azide ligands. The crystal structure features chains along the c direction in which azide groups doubly bridge two adjacent CdII atoms in an end-on (EO) mode. Inter­chain π–π stacking inter­actions, with centroid–centroid separations of 3.408 (2) Å between the central aromatic rings of 1,10-phenanthroline mol­ecules, lead to a supra­molecular sheet parallel to the bc plane.

Related literature

For the structures of related metal-azido compounds, see: Goher et al. (2008); Ribas et al. (1999); Liu et al. (2007); Cano et al. (2005); Abu-Youssef et al. (2000); Bose et al. (2004); Mautner et al. (2010); Meyer et al. (2005); Gao et al. (2004).graphic file with name e-66-0m758-scheme1.jpg

Experimental

Crystal data

  • [Cd(N3)2(C12H8N2)]

  • M r = 376.67

  • Monoclinic, Inline graphic

  • a = 19.4591 (17) Å

  • b = 10.2988 (6) Å

  • c = 6.8151 (6) Å

  • β = 106.033 (4)°

  • V = 1312.66 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.18 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) T min = 0.774, T max = 1.000

  • 4185 measured reflections

  • 1217 independent reflections

  • 1133 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.056

  • S = 1.05

  • 1217 reflections

  • 96 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810019318/dn2567sup1.cif

e-66-0m758-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019318/dn2567Isup2.hkl

e-66-0m758-Isup2.hkl (60.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support from National Natural Science Foundation of China (20871115).

supplementary crystallographic information

Comment

Many compounds with uncommon magnetic properties have been widely investigated by using azido ligand, resulting from its rich coordination fashions (Ribas et al., 1999; Gao et al., 2004). The azido ligand exhibits a variety of bridging modes such as bi-dentate end-on (EO) and end-to-end (EE) bridging fashions (Liu et al., 2007; Cano et al., 2005; Goher et al., 2008; Mautner et al., 2010). A number of compounds with various structures have been obtained by introducing auxiliary ligands to the metal-azido system (Abu-Youssef et al., 2000; Bose et al., 2004; Meyer et al., 2005). The present example shows an infinite wavelike chain compound with 1,10-phenanthroline as an auxiliary ligand, [Cd(N3)2(C12H8N2)], in which azido ligand adopts the EO mode.

The asymmetric unit of the title compound contains half a CdII ion, one azido ion and half a 1,10-phenanthroline molecule (Fig. 1). The CdII ion exhibits a distorted octahedral geometry, coordinated by one chelating 1,10-phenanthroline ligand and four azido ligands with the end-on (EO) mode. The distances of Cd—N vary from 2.306 (2) to 2.411 (3) Å . The azido ligands doubly bridge neighbouring CdII centers in the EO fashion, yielding an infinite wave-like CdII-azido chain along the c direction with the shortest Cd···Cd separation being 3.764 (3) Å.

The adjacent CdII-azido chains are mediated by interchained π-π stacking interactions between the aromatic rings of 1,10-phenanthroline molecules, which arrange in the opposite direction alternatively. The centroid-to-centroid distance between the central rings of the phenanthroline is 3.408 (2)Å and the centroid-to-plane distance is 3.28 Å leading to a slippage of 0.936Å. This π-π stacking builts up a 2-D supramolecular layer parallel to the bc plane (Fig. 2).

Experimental

A mixture of Cd(NO3)2.4H2O (0.308 g, 1.00 mmol), NaN3 (0.065 g, 1.00 mmol), Na(3-cba) (0.085 g, 0.50 mmol 3-Hcba = 3-cyanobenzoate acid), 1,10-phenanthroline (0.099 g, 0.50 mmol) and H2O (8 ml) was placed in a Teflon-lined stainless container, and then heated at 453 K for 2 days, after cooled to room temperature for 2 days. Pale-yellow prism-shaped crystals of the title compound were obtained. IR peaks (KBr, cm-1): 2053 s, 2037 s h, 1589 w, 1515 w, 1425 w, 1333 w, 1284 w, 846 m, 772 w, 727 m, 656 w. A strong band around 2053 cm-1 indicates the presence of the azido group.

Refinement

Hydrogen atoms were allowed to ride on their respective parent atoms with C—H distances of 0.93 Å, and were included in the refinement with isotropic displacement parameters Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.[Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+1, -y+2, -z; (iii) x, -y+2, z+1/2; (iv) x, -y+2, z-1/2].

Fig. 2.

Fig. 2.

View of the 2-D layer structure of the title compound formed by 1-D CdII-azido chains linked through π-π stacking interactions (black dotted lines) between symetry related 1,10-phenanthroline molecules. Hydrogen atoms have been omitted for clarity.

Crystal data

[Cd(N3)2(C12H8N2)] F(000) = 736
Mr = 376.67 Dx = 1.906 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1622 reflections
a = 19.4591 (17) Å θ = 2.3–27.5°
b = 10.2988 (6) Å µ = 1.67 mm1
c = 6.8151 (6) Å T = 293 K
β = 106.033 (4)° Prism, pale-yellow
V = 1312.66 (18) Å3 0.30 × 0.20 × 0.18 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer 1217 independent reflections
Radiation source: fine-focus sealed tube 1133 reflections with I > 2σ(I)
graphite Rint = 0.023
Detector resolution: 13.6612 pixels mm-1 θmax = 25.5°, θmin = 3.6°
CCD_Profile_fitting scans h = −23→22
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) k = −12→12
Tmin = 0.774, Tmax = 1.000 l = −8→8
4185 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.2202P] where P = (Fo2 + 2Fc2)/3
1217 reflections (Δ/σ)max = 0.001
96 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.5000 0.922344 (19) 0.2500 0.03485 (12)
N1 0.43055 (13) 1.0473 (2) −0.0103 (3) 0.0446 (5)
N2 0.37375 (13) 1.0889 (2) −0.0144 (4) 0.0459 (6)
N3 0.31894 (16) 1.1315 (4) −0.0167 (6) 0.0898 (10)
N11 0.43063 (10) 0.73525 (19) 0.1345 (3) 0.0367 (4)
C11 0.36250 (14) 0.7349 (3) 0.0214 (4) 0.0488 (6)
H11A 0.3404 0.8140 −0.0213 0.059*
C12 0.32340 (16) 0.6220 (4) −0.0352 (5) 0.0587 (8)
H12A 0.2758 0.6260 −0.1114 0.070*
C13 0.35523 (17) 0.5055 (3) 0.0218 (4) 0.0551 (8)
H13A 0.3293 0.4291 −0.0144 0.066*
C14 0.42742 (16) 0.5003 (2) 0.1357 (4) 0.0447 (6)
C15 0.46270 (13) 0.6200 (2) 0.1908 (3) 0.0344 (5)
C16 0.46560 (18) 0.3819 (3) 0.1969 (4) 0.0552 (8)
H16A 0.4420 0.3032 0.1619 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.03961 (17) 0.03359 (16) 0.02969 (16) 0.000 0.00680 (11) 0.000
N1 0.0461 (13) 0.0517 (11) 0.0384 (12) 0.0101 (11) 0.0156 (10) 0.0139 (10)
N2 0.0417 (14) 0.0477 (13) 0.0439 (13) 0.0009 (10) 0.0047 (10) −0.0005 (9)
N3 0.0428 (16) 0.116 (3) 0.105 (3) 0.0208 (18) 0.0108 (16) −0.008 (2)
N11 0.0368 (10) 0.0410 (11) 0.0332 (10) 0.0009 (9) 0.0109 (8) −0.0043 (8)
C11 0.0405 (13) 0.0601 (17) 0.0449 (14) 0.0015 (13) 0.0099 (11) −0.0113 (13)
C12 0.0430 (15) 0.084 (2) 0.0481 (16) −0.0126 (16) 0.0112 (13) −0.0179 (16)
C13 0.0651 (19) 0.0630 (18) 0.0434 (15) −0.0282 (16) 0.0257 (14) −0.0187 (13)
C14 0.0678 (18) 0.0436 (14) 0.0314 (12) −0.0137 (12) 0.0282 (13) −0.0088 (10)
C15 0.0436 (13) 0.0385 (11) 0.0241 (11) −0.0021 (11) 0.0146 (10) −0.0024 (9)
C16 0.099 (2) 0.0354 (11) 0.0409 (16) −0.0135 (14) 0.0363 (15) −0.0077 (11)

Geometric parameters (Å, °)

Cd1—N1i 2.303 (2) C11—C12 1.385 (5)
Cd1—N1 2.303 (2) C11—H11A 0.9300
Cd1—N11 2.3596 (19) C12—C13 1.357 (5)
Cd1—N11i 2.3596 (19) C12—H12A 0.9300
Cd1—N1ii 2.411 (2) C13—C14 1.406 (4)
Cd1—N1iii 2.411 (2) C13—H13A 0.9300
N1—N2 1.179 (3) C14—C15 1.410 (4)
N1—Cd1ii 2.411 (2) C14—C16 1.429 (4)
N2—N3 1.149 (4) C15—C15i 1.453 (5)
N11—C11 1.337 (3) C16—C16i 1.335 (7)
N11—C15 1.347 (3) C16—H16A 0.9300
N1i—Cd1—N1 112.07 (12) C11—N11—Cd1 125.41 (18)
N1i—Cd1—N11 150.83 (8) C15—N11—Cd1 116.58 (15)
N1—Cd1—N11 92.25 (8) N11—C11—C12 122.9 (3)
N1i—Cd1—N11i 92.25 (8) N11—C11—H11A 118.5
N1—Cd1—N11i 150.83 (8) C12—C11—H11A 118.5
N11—Cd1—N11i 70.51 (9) C13—C12—C11 119.4 (3)
N1i—Cd1—N1ii 97.46 (8) C13—C12—H12A 120.3
N1—Cd1—N1ii 74.05 (9) C11—C12—H12A 120.3
N11—Cd1—N1ii 104.83 (8) C12—C13—C14 119.9 (3)
N11i—Cd1—N1ii 87.47 (7) C12—C13—H13A 120.0
N1i—Cd1—N1iii 74.05 (9) C14—C13—H13A 120.0
N1—Cd1—N1iii 97.46 (8) C13—C14—C15 116.9 (3)
N11—Cd1—N1iii 87.47 (7) C13—C14—C16 123.6 (3)
N11i—Cd1—N1iii 104.83 (8) C15—C14—C16 119.5 (3)
N1ii—Cd1—N1iii 165.09 (11) N11—C15—C14 122.8 (2)
N2—N1—Cd1 124.66 (19) N11—C15—C15i 118.13 (13)
N2—N1—Cd1ii 129.35 (18) C14—C15—C15i 119.09 (16)
Cd1—N1—Cd1ii 105.95 (9) C16i—C16—C14 121.41 (17)
N3—N2—N1 178.8 (3) C16i—C16—H16A 119.3
C11—N11—C15 118.0 (2) C14—C16—H16A 119.3

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y+2, −z; (iii) x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2567).

References

  1. Abu-Youssef, M. A. M., Escuer, A., Goher, M. A. S., Mautner, F. A., Reiss, G. J. & Vicente, R. (2000). Angew. Chem. Int. Ed.39, 1624–1626. [DOI] [PubMed]
  2. Bose, D., Rahaman, S. H., Mostafa, G., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2004). Polyhedron, 23, 545–552.
  3. Cano, J., Journaux, Y., Goher, M. A. S., Abu-Youssef, M. A. M., Mautner, F. A., Reiss, G. J., Escuer, A. & Vicente, R. (2005). New J. Chem.29, 306–314.
  4. Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z., Zhang, S.-W. & Yan, C.-H. (2004). Chem. Mater.16, 1590–1596.
  5. Goher, M. A. S., Mautner, F. A., Gatterer, K., Abu-Youssef, M. A. M., Badr, A. M. A., Sodin, B. & Gspan, C. (2008). J. Mol. Struct.876, 199–205.
  6. Liu, F.-C., Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Bu, X.-H., Ribas, J. & Cano, J. (2007). Inorg. Chem.46, 1520–1522. [DOI] [PubMed]
  7. Mautner, F. A., Egger, A., Sodin, B., Goher, M. A. S., Abu-Youssef, M. A. M., Massoud, A., Escuer, A. & Vicente, R. (2010). J. Mol. Struct.969, 192–196.
  8. Meyer, F., Demeshko, S., Leibeling, G., Kersting, B., Kaifer, E. & Pritzkow, H. (2005). Chem. Eur. J.11, 1518–1526. [DOI] [PubMed]
  9. Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev.193195, 1027–1068.
  10. Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810019318/dn2567sup1.cif

e-66-0m758-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019318/dn2567Isup2.hkl

e-66-0m758-Isup2.hkl (60.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES