Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 23;66(Pt 7):m837. doi: 10.1107/S1600536810023342

Bis(nitrato-κO)(5,7,12,14-tetra­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-6,13-diaminium-κ4 N 1,N 4,N 8,N 11)copper(II) dinitrate tetra­hydrate

Xiang-Yun Liu a,*, Hong-Ying Chu b
PMCID: PMC3006849  PMID: 21587749

Abstract

In the title compound, [Cu(NO3)2(C14H36N6)](NO3)2·4H2O, the CuII atom, lying on an inversion center, is six-coordinated in a distorted octa­hedral environment by four N atoms from a centrosymmetric 14-membered tetra­aza­cyclo­tetra­decane macrocyclic ligand and two O atoms from two nitrate anions. The supra­molecular network is consolidated by extensive O—H⋯O and N—H⋯O hydrogen-bonding inter­actions.

Related literature

For Cu(II) complexes of related macrocyclic ligands, see: Bernhardt (1999); Bernhardt & Sharpe (1998).graphic file with name e-66-0m837-scheme1.jpg

Experimental

Crystal data

  • [Cu(NO3)2(C14H36N6)](NO3)2·4H2O

  • M r = 672.14

  • Monoclinic, Inline graphic

  • a = 9.201 (2) Å

  • b = 16.576 (4) Å

  • c = 9.278 (2) Å

  • β = 98.788 (4)°

  • V = 1398.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 123 K

  • 0.37 × 0.34 × 0.31 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.739, T max = 0.774

  • 6071 measured reflections

  • 3021 independent reflections

  • 2269 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.133

  • S = 1.03

  • 3021 reflections

  • 202 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023342/hy2316sup1.cif

e-66-0m837-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023342/hy2316Isup2.hkl

e-66-0m837-Isup2.hkl (148.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O3 0.93 2.43 3.155 (4) 134
N1—H1C⋯O2Wi 0.93 2.28 3.096 (4) 146
N2—H2A⋯O3 0.93 2.52 3.244 (4) 135
N2—H2A⋯O4ii 0.93 2.47 3.249 (4) 141
N3—H3D⋯O4 0.91 2.08 2.924 (4) 155
N3—H3E⋯O1Wiii 0.91 1.86 2.748 (4) 164
N3—H3F⋯O2i 0.91 2.06 2.902 (4) 154
N3—H3F⋯O3i 0.91 2.32 3.108 (4) 145
O1W—H1WA⋯O2i 0.84 (4) 2.01 (3) 2.823 (4) 160 (5)
O1W—H1WB⋯O5iv 0.84 (2) 1.97 (2) 2.795 (4) 168 (5)
O2W—H2WA⋯O6ii 0.93 (5) 2.00 (5) 2.913 (5) 166 (5)
O2W—H2WB⋯O6v 0.92 (2) 2.18 (2) 3.084 (5) 167 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors acknowledge Henan University of Urban Construction for supporting this work.

supplementary crystallographic information

Comment

In the past, much attention has been given to the copper complexes of macrocyclic trans-5(R),7(R),12(R), 14(R)-tetramethyl-6, 13-dinitro-1,4,8,11-tetraazacyclotetradecane and related ligands (Bernhardt, 1999; Bernhardt & Sharpe, 1998). Recently, we have synthesized a Cu(II) complex based on 5,7,12,14-tetramethyl-6,13- diamino-1,4,8,11-tetraazacyclotetradecane and its structure is reported here.

The asymmetric unit of the title compound (Fig. 1) contains one CuII ion lying on an inversion center, one half of a 14-membered tetraazacyclotetradecane macrocyclic ligand, one coordinated nitrate anion, one uncoordinated nitrate anion and two solvent water molecules. The CuII ion has a slightly distorted octahedral coordination geometry, with two O atoms from two nitrate anions in the axial positions. The equatorial positions are occupied by four N atoms from the centrosymmetric 14-membered tetraazacyclotetradecane macrocyclic ligand [Cu1—N1 2.025 (2) and Cu1—N2 2.020 (2) Å]. The two uncoordinated nitrate anions are located above and below the 14-membered tetraazacyclotetradecane macrocycle and linked to the macrocycle via N—H···O hydrogen bonds (Table 1).

Experimental

An aqueous solution of 5,7,12,14-tetramethyl-6,13-diamino-1,4,8,11-tetraazacyclotetradecane (0.27 g, 1.0 mmol), Cu(NO3)2 (0.10 g, 0.5 mmol) and Na2CO3 (0.05 g, 0.5 mmol) was heated to reflux for 24 h. The reaction mixture was cooled to room temperature and red crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

H atoms bound to C and N atoms were placed at calculated positions and were treated as riding on the parent atoms, with C—H = 1.00 (CH), 0.99 (CH2) and 0.98 (CH3) Å and N—H = 0.93 (NH) and 0.91 (NH3) Å and with Uiso(H) = 1.2–1.5 Ueq(C, N). H atoms attached to water molecules were located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(O). The highest residual electron density was found 0.91 Å from O3 the deepest hole 0.52 Å from H2WA.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 2-x, -y, 1-z.]

Crystal data

[Cu(NO3)2(C14H36N6)](NO3)2·4H2O F(000) = 710
Mr = 672.14 Dx = 1.596 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2543 reflections
a = 9.201 (2) Å θ = 2.5–27.0°
b = 16.576 (4) Å µ = 0.87 mm1
c = 9.278 (2) Å T = 123 K
β = 98.788 (4)° Block, red
V = 1398.4 (5) Å3 0.37 × 0.34 × 0.31 mm
Z = 2

Data collection

Bruker SMART 1000 CCD diffractometer 3021 independent reflections
Radiation source: fine-focus sealed tube 2269 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 27.1°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −11→11
Tmin = 0.739, Tmax = 0.774 k = −21→17
6071 measured reflections l = −10→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0649P)2 + 2.4391P] where P = (Fo2 + 2Fc2)/3
3021 reflections (Δ/σ)max = 0.036
202 parameters Δρmax = 1.24 e Å3
6 restraints Δρmin = −0.81 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8753 (4) 0.0883 (2) 0.2521 (3) 0.0169 (7)
H1A 0.9413 0.1356 0.2695 0.020*
H1B 0.7886 0.1039 0.1807 0.020*
C2 0.7676 (3) 0.13149 (18) 0.4684 (3) 0.0136 (6)
H2 0.8477 0.1722 0.4930 0.016*
C3 0.6400 (4) 0.1717 (2) 0.3687 (3) 0.0234 (8)
H3A 0.6749 0.1921 0.2809 0.035*
H3B 0.6019 0.2167 0.4205 0.035*
H3C 0.5616 0.1322 0.3408 0.035*
C4 0.7205 (3) 0.10160 (19) 0.6114 (3) 0.0129 (6)
H4 0.6574 0.0527 0.5888 0.016*
C5 0.8448 (3) 0.08013 (19) 0.7366 (3) 0.0137 (6)
H5 0.7973 0.0642 0.8224 0.016*
C6 0.9474 (3) 0.15076 (19) 0.7843 (3) 0.0167 (7)
H6A 1.0086 0.1378 0.8774 0.025*
H6B 0.8889 0.1991 0.7960 0.025*
H6C 1.0105 0.1608 0.7102 0.025*
C7 1.0453 (3) −0.0192 (2) 0.8066 (3) 0.0170 (7)
H7A 1.0050 −0.0366 0.8947 0.020*
H7B 1.1144 0.0259 0.8342 0.020*
Cu1 1.0000 0.0000 0.5000 0.01124 (16)
N1 0.8274 (3) 0.06223 (16) 0.3922 (2) 0.0120 (5)
H1C 0.7509 0.0256 0.3683 0.014*
N2 0.9236 (3) 0.00785 (15) 0.6924 (3) 0.0128 (5)
H2A 0.8545 −0.0334 0.6882 0.015*
N3 0.6297 (3) 0.16570 (17) 0.6691 (3) 0.0173 (6)
H3D 0.6722 0.2147 0.6611 0.026*
H3E 0.6241 0.1555 0.7645 0.026*
H3F 0.5376 0.1657 0.6167 0.026*
N5 0.7860 (3) 0.36290 (18) 0.6169 (3) 0.0214 (6)
O4 0.6922 (3) 0.33861 (18) 0.6897 (3) 0.0377 (7)
O5 0.8513 (3) 0.31313 (17) 0.5511 (3) 0.0399 (7)
O6 0.8117 (3) 0.43623 (16) 0.6061 (4) 0.0402 (7)
O1W 0.1266 (3) 0.33514 (16) 0.4647 (3) 0.0236 (5)
O2W 0.4173 (4) 0.0272 (3) 0.8131 (4) 0.0592 (10)
H1WA 0.168 (5) 0.291 (2) 0.489 (6) 0.071*
H1WB 0.039 (3) 0.334 (3) 0.481 (6) 0.071*
H2WA 0.494 (5) −0.008 (3) 0.846 (6) 0.071*
H2WB 0.396 (6) 0.045 (3) 0.901 (3) 0.071*
N4 0.7300 (3) −0.14301 (18) 0.4733 (3) 0.0233 (6)
O1 0.8658 (2) −0.13506 (15) 0.4843 (2) 0.0226 (5)
O2 0.6711 (3) −0.21048 (15) 0.4441 (3) 0.0252 (6)
O3 0.6522 (3) −0.08487 (18) 0.4963 (4) 0.0520 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0194 (16) 0.0188 (17) 0.0124 (14) 0.0044 (13) 0.0023 (11) 0.0043 (12)
C2 0.0175 (15) 0.0104 (15) 0.0122 (14) 0.0038 (12) 0.0004 (11) 0.0000 (11)
C3 0.0233 (18) 0.032 (2) 0.0150 (15) 0.0136 (15) 0.0039 (13) 0.0031 (14)
C4 0.0113 (14) 0.0153 (16) 0.0120 (13) 0.0026 (12) 0.0014 (11) −0.0013 (11)
C5 0.0141 (15) 0.0155 (16) 0.0117 (13) 0.0025 (12) 0.0021 (11) 0.0011 (11)
C6 0.0171 (15) 0.0130 (16) 0.0192 (15) 0.0000 (12) −0.0003 (12) −0.0031 (12)
C7 0.0175 (15) 0.0232 (18) 0.0094 (13) 0.0068 (13) −0.0009 (11) 0.0019 (11)
Cu1 0.0120 (3) 0.0135 (3) 0.0079 (2) 0.0030 (2) 0.00051 (17) 0.0002 (2)
N1 0.0121 (12) 0.0128 (13) 0.0112 (11) 0.0008 (10) 0.0022 (9) −0.0003 (10)
N2 0.0123 (12) 0.0143 (14) 0.0113 (11) 0.0017 (10) −0.0001 (9) 0.0009 (10)
N3 0.0161 (13) 0.0226 (16) 0.0134 (12) 0.0050 (11) 0.0030 (10) −0.0006 (11)
N5 0.0167 (14) 0.0227 (16) 0.0244 (14) 0.0033 (12) 0.0021 (11) 0.0008 (12)
O4 0.0357 (16) 0.0389 (17) 0.0442 (16) 0.0024 (13) 0.0241 (13) 0.0093 (13)
O5 0.0442 (17) 0.0260 (15) 0.0558 (18) −0.0001 (13) 0.0282 (14) −0.0111 (13)
O6 0.0382 (16) 0.0149 (14) 0.071 (2) −0.0009 (12) 0.0184 (14) −0.0028 (13)
O1W 0.0252 (13) 0.0268 (14) 0.0192 (12) −0.0001 (11) 0.0047 (10) 0.0005 (10)
O2W 0.051 (2) 0.068 (3) 0.056 (2) 0.0019 (19) −0.0006 (17) −0.0158 (19)
N4 0.0187 (14) 0.0206 (16) 0.0305 (16) −0.0036 (12) 0.0031 (12) −0.0016 (12)
O1 0.0153 (11) 0.0264 (14) 0.0268 (12) −0.0057 (10) 0.0053 (9) −0.0017 (10)
O2 0.0212 (12) 0.0197 (13) 0.0327 (13) −0.0060 (10) −0.0022 (10) −0.0022 (10)
O3 0.0230 (15) 0.0230 (16) 0.111 (3) 0.0001 (12) 0.0151 (16) −0.0074 (17)

Geometric parameters (Å, °)

C1—N1 1.499 (4) C7—C1i 1.505 (4)
C1—C7i 1.505 (4) C7—H7A 0.9900
C1—H1A 0.9900 C7—H7B 0.9900
C1—H1B 0.9900 Cu1—N2 2.020 (2)
C2—N1 1.496 (4) Cu1—N1 2.025 (2)
C2—C3 1.532 (4) Cu1—O1 2.550 (2)
C2—C4 1.539 (4) N1—H1C 0.9300
C2—H2 1.0000 N2—H2A 0.9300
C3—H3A 0.9800 N3—H3D 0.9100
C3—H3B 0.9800 N3—H3E 0.9100
C3—H3C 0.9800 N3—H3F 0.9100
C4—N3 1.500 (4) N5—O5 1.235 (4)
C4—C5 1.542 (4) N5—O4 1.241 (4)
C4—H4 1.0000 N5—O6 1.245 (4)
C5—N2 1.491 (4) O1W—H1WA 0.84 (4)
C5—C6 1.526 (4) O1W—H1WB 0.84 (2)
C5—H5 1.0000 O2W—H2WA 0.93 (5)
C6—H6A 0.9800 O2W—H2WB 0.91 (2)
C6—H6B 0.9800 N4—O3 1.239 (4)
C6—H6C 0.9800 N4—O1 1.245 (4)
C7—N2 1.488 (3) N4—O2 1.254 (4)
N1—C1—C7i 108.5 (2) N2—C7—H7A 109.9
N1—C1—H1A 110.0 C1i—C7—H7A 109.9
C7i—C1—H1A 110.0 N2—C7—H7B 109.9
N1—C1—H1B 110.0 C1i—C7—H7B 109.9
C7i—C1—H1B 110.0 H7A—C7—H7B 108.3
H1A—C1—H1B 108.4 N2i—Cu1—N1 87.06 (10)
N1—C2—C3 110.6 (2) N2—Cu1—N1 92.94 (10)
N1—C2—C4 109.4 (2) O1—Cu1—N1 94.74 (9)
C3—C2—C4 111.7 (3) O1—Cu1—N2 82.89 (8)
N1—C2—H2 108.3 O1—Cu1—N1i 85.26 (9)
C3—C2—H2 108.3 O1—Cu1—N2i 97.11 (8)
C4—C2—H2 108.3 C2—N1—C1 111.5 (2)
C2—C3—H3A 109.5 C2—N1—Cu1 118.36 (17)
C2—C3—H3B 109.5 C1—N1—Cu1 105.27 (18)
H3A—C3—H3B 109.5 C2—N1—H1C 107.1
C2—C3—H3C 109.5 C1—N1—H1C 107.1
H3A—C3—H3C 109.5 Cu1—N1—H1C 107.1
H3B—C3—H3C 109.5 C7—N2—C5 113.0 (2)
N3—C4—C2 109.0 (2) C7—N2—Cu1 106.55 (18)
N3—C4—C5 106.5 (2) C5—N2—Cu1 123.02 (18)
C2—C4—C5 116.8 (3) C7—N2—H2A 104.1
N3—C4—H4 108.1 C5—N2—H2A 104.1
C2—C4—H4 108.1 Cu1—N2—H2A 104.1
C5—C4—H4 108.1 C4—N3—H3D 109.5
N2—C5—C6 113.0 (2) C4—N3—H3E 109.5
N2—C5—C4 108.3 (2) H3D—N3—H3E 109.5
C6—C5—C4 113.3 (3) C4—N3—H3F 109.5
N2—C5—H5 107.3 H3D—N3—H3F 109.5
C6—C5—H5 107.3 H3E—N3—H3F 109.5
C4—C5—H5 107.3 O5—N5—O4 118.9 (3)
C5—C6—H6A 109.5 O5—N5—O6 120.0 (3)
C5—C6—H6B 109.5 O4—N5—O6 121.1 (3)
H6A—C6—H6B 109.5 H1WA—O1W—H1WB 109 (4)
C5—C6—H6C 109.5 H2WA—O2W—H2WB 99 (4)
H6A—C6—H6C 109.5 O3—N4—O1 120.2 (3)
H6B—C6—H6C 109.5 O3—N4—O2 119.3 (3)
N2—C7—C1i 109.0 (2) O1—N4—O2 120.5 (3)
N1—C2—C4—N3 −167.0 (2) N2i—Cu1—N1—C2 −142.1 (2)
C3—C2—C4—N3 −44.1 (3) N2—Cu1—N1—C2 37.9 (2)
N1—C2—C4—C5 72.4 (3) N2i—Cu1—N1—C1 −16.78 (19)
C3—C2—C4—C5 −164.7 (3) N2—Cu1—N1—C1 163.22 (19)
N3—C4—C5—N2 171.2 (2) C1i—C7—N2—C5 −175.9 (3)
C2—C4—C5—N2 −66.9 (3) C1i—C7—N2—Cu1 −37.9 (3)
N3—C4—C5—C6 −62.6 (3) C6—C5—N2—C7 54.5 (3)
C2—C4—C5—C6 59.3 (3) C4—C5—N2—C7 −179.2 (2)
C3—C2—N1—C1 56.7 (3) C6—C5—N2—Cu1 −75.7 (3)
C4—C2—N1—C1 −179.9 (2) C4—C5—N2—Cu1 50.7 (3)
C3—C2—N1—Cu1 178.9 (2) N1i—Cu1—N2—C7 11.4 (2)
C4—C2—N1—Cu1 −57.6 (3) N1—Cu1—N2—C7 −168.6 (2)
C7i—C1—N1—C2 171.5 (2) N1i—Cu1—N2—C5 144.2 (2)
C7i—C1—N1—Cu1 42.0 (3) N1—Cu1—N2—C5 −35.8 (2)

Symmetry codes: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1C···O3 0.93 2.43 3.155 (4) 134
N1—H1C···O2Wii 0.93 2.28 3.096 (4) 146
N2—H2A···O3 0.93 2.52 3.244 (4) 135
N2—H2A···O4iii 0.93 2.47 3.249 (4) 141
N3—H3D···O4 0.91 2.08 2.924 (4) 155
N3—H3E···O1Wiv 0.91 1.86 2.748 (4) 164
N3—H3F···O2ii 0.91 2.06 2.902 (4) 154
N3—H3F···O3ii 0.91 2.32 3.108 (4) 145
O1W—H1WA···O2ii 0.84 (4) 2.01 (3) 2.823 (4) 160 (5)
O1W—H1WB···O5v 0.84 (2) 1.97 (2) 2.795 (4) 168 (5)
O2W—H2WA···O6iii 0.93 (5) 2.00 (5) 2.913 (5) 166 (5)
O2W—H2WB···O6vi 0.92 (2) 2.18 (2) 3.084 (5) 167 (5)

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x+3/2, y−1/2, −z+3/2; (iv) x+1/2, −y+1/2, z+1/2; (v) x−1, y, z; (vi) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2316).

References

  1. Bernhardt, P. V. (1999). Inorg. Chem.38, 3481–3483. [DOI] [PubMed]
  2. Bernhardt, P. V. & Sharpe, P. C. (1998). Inorg. Chem.37, 1629–1236.
  3. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023342/hy2316sup1.cif

e-66-0m837-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023342/hy2316Isup2.hkl

e-66-0m837-Isup2.hkl (148.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES