Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 16;66(Pt 7):m790. doi: 10.1107/S1600536810021434

(5,15-Dianthracen-9-yl-10,20-dihexyl­porphyrinato)nickel(II): a planar nickel(II) porphyrin

Mathias O Senge a,*, Mia Davis a
PMCID: PMC3006865  PMID: 21587714

Abstract

The title compound, [Ni(C60H52N4)], is an example of a meso tetra­substituted nickel(II) porphyrin with both meso aryl and alkyl residues. The mol­ecule exhibits a planar macrocycle with an average deviation of the 24 macrocycle atoms from their least-squares plane (Δ24) of 0.01 Å and an average Ni—N bond length of 1.960 (2) Å. The NiII atom lies on a center of inversion. The structure presents a rare example for a planar nickel(II) porphyrin, as meso-substituted nickel(II) porphyrins with either only meso-aryl or with meso-alkyl residues typically exhibit a ruffled conformation.

Related literature

For the conformation of porphyrins, see: Senge (2006). For porphyrins with mixed meso substituents, see: Senge et al. (2010). For Ni(II) porphyrin structures, see: Fleischer et al. (1964); Gallucci et al. (1982); Hoard (1973); Lee & Scheidt (1987); Senge et al. (1999, 2000) and Runge et al. (1999). For anthracenyl porphyrins see: Volz & Schäffer (1985); Davis et al. (2008); Sooambar et al. (2009). For the handling of the crystals, see: Hope (1994).graphic file with name e-66-0m790-scheme1.jpg

Experimental

Crystal data

  • [Ni(C60H52N4)]

  • M r = 887.77

  • Triclinic, Inline graphic

  • a = 7.797 (3) Å

  • b = 9.387 (3) Å

  • c = 15.285 (5) Å

  • α = 97.246 (6)°

  • β = 91.222 (4)°

  • γ = 91.402 (6)°

  • V = 1109.1 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 118 K

  • 0.50 × 0.20 × 0.05 mm

Data collection

  • Rigaku Saturn724 diffractometer

  • 17330 measured reflections

  • 3875 independent reflections

  • 3233 reflections with I > 2σ(I)

  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.087

  • S = 1.00

  • 3875 reflections

  • 296 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021434/ng2783sup1.cif

e-66-0m790-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021434/ng2783Isup2.hkl

e-66-0m790-Isup2.hkl (189.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni—N22 1.9570 (17)
Ni—N21 1.9632 (17)

Acknowledgments

This work was supported by a grant from Science Foundation Ireland (SFI P.I. 09/IN.1/B2650).

supplementary crystallographic information

Comment

In continuation of studies on the conformational flexibility of porphyrins (Senge, 2006) the structure of the title compound was determined as an example for a meso substituted porphyrin with both meso alkyl and meso aryl subsitutents (Senge et al., 2010) and in relation to current synthetic studies on anthracenyl porphyrins (Volz & Schäffer, 1985; Davis et al., 2008; Sooambar et al., 2009).

The structure of (I), is shown in Fig. 1. The molecule exhibits a completely planar macrocycle with an average deviation of the 24 macrocycle atoms from their least-squares-plane (Δ24) of 0.01 Å and an average Ni—N bond length of 1.960 (2) Å. All geometrical parameters are typical for a planar nickel(II) porphyrin (Senge et al., 2000). No individual macrocycle atom was displaced more then 0.015 Å from the mean plane. Likewise, differences in bond angles and lenghts between the meso aryl and meso alkyl quadrants are minimal. The anthracenyl residues are almost orthogonal to the plane of the four nitrogen atoms (96.2°) similarly to the situation found in related zinc(II) systems with meso aryl residues (Sooambar et al., 2009). In the crystal packing there are no close contacts (not shown). The anthracene residues prevent π-stacking of the porphyrins and the hexyl side chains are oriented between neighboring anthracenyl substituents and hinder π-stacking as well.

The structure presents a rare example for a planar nickel(II) porphyrin. Typically, meso substituted nickel(II) porphyrins with only meso aryl residues (Fleischer et al., 1964; Hoard, 1973; Lee & Scheidt, 1987) and those with meso alkyl residues (Senge et al., 1999; Runge et al., 1999) exhibit a ruffled conformation. Only (5,10,15,20-tetramethylporphyrinato)nickel(II) exbihits an almost planar conformation as well (Gallucci et al., 1982).

Experimental

The compound was prepared via metallation of the respective free base porphyrin and crystallized via liquid diffusion of methanol into a solution of the porphyrin in methylene chloride. Crystals were handled as described by Hope (1994).

Refinement

Hydrogen atoms were located in difference maps and refined using a standard riding model.

Figures

Fig. 1.

Fig. 1.

: View of the molecular structure of I in the crystals. Thermal ellipsoids are drawn for 50% occupancy.

Crystal data

[Ni(C60H52N4)] Z = 1
Mr = 887.77 F(000) = 468
Triclinic, P1 Dx = 1.329 Mg m3
Hall symbol: -P 1 Melting point: n/d K
a = 7.797 (3) Å Mo Kα radiation, λ = 0.71075 Å
b = 9.387 (3) Å Cell parameters from 3864 reflections
c = 15.285 (5) Å θ = 2.4–31.2°
α = 97.246 (6)° µ = 0.48 mm1
β = 91.222 (4)° T = 118 K
γ = 91.402 (6)° Prism, red
V = 1109.1 (7) Å3 0.50 × 0.20 × 0.05 mm

Data collection

Rigaku Saturn724 diffractometer 3233 reflections with I > 2σ(I)
Radiation source: Sealed Tube Rint = 0.070
Graphite Monochromator θmax = 25.0°, θmin = 3.0°
Detector resolution: 28.5714 pixels mm-1 h = −9→9
dtprofit.ref scans k = −11→11
17330 measured reflections l = −18→18
3875 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0371P)2] where P = (Fo2 + 2Fc2)/3
3875 reflections (Δ/σ)max < 0.001
296 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.40 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni 0.0000 0.5000 0.0000 0.01798 (12)
N21 0.1442 (2) 0.47152 (16) 0.10290 (10) 0.0185 (4)
N22 0.1822 (2) 0.62389 (16) −0.03788 (10) 0.0192 (4)
C5 −0.0499 (3) 0.31349 (19) 0.17545 (13) 0.0185 (4)
C6 0.1022 (3) 0.3901 (2) 0.16960 (13) 0.0198 (5)
C7 0.2375 (3) 0.3969 (2) 0.23403 (13) 0.0247 (5)
H7A 0.2383 0.3500 0.2856 0.030*
C8 0.3643 (3) 0.4817 (2) 0.20886 (14) 0.0243 (5)
H8A 0.4707 0.5059 0.2391 0.029*
C9 0.3069 (3) 0.5284 (2) 0.12716 (13) 0.0194 (5)
C10 0.4031 (3) 0.6194 (2) 0.08102 (13) 0.0204 (5)
C11 0.3407 (3) 0.6617 (2) 0.00254 (13) 0.0197 (5)
C12 0.4362 (3) 0.7542 (2) −0.04785 (14) 0.0244 (5)
H12A 0.5476 0.7949 −0.0337 0.029*
C13 0.3384 (3) 0.7725 (2) −0.11872 (14) 0.0248 (5)
H13A 0.3677 0.8283 −0.1642 0.030*
C14 0.1820 (3) 0.69232 (19) −0.11298 (13) 0.0190 (5)
C5A −0.0738 (3) 0.2335 (2) 0.25355 (13) 0.0205 (5)
C5B −0.0381 (3) 0.0855 (2) 0.24777 (14) 0.0230 (5)
C5C 0.0207 (3) 0.0055 (2) 0.16833 (15) 0.0263 (5)
H5CA 0.0405 0.0534 0.1181 0.032*
C5D 0.0488 (3) −0.1376 (2) 0.16363 (16) 0.0334 (6)
H5DA 0.0880 −0.1884 0.1104 0.040*
C5E 0.0197 (3) −0.2119 (2) 0.23800 (17) 0.0360 (6)
H5EA 0.0382 −0.3122 0.2338 0.043*
C5F −0.0339 (3) −0.1403 (2) 0.31441 (16) 0.0321 (6)
H5FA −0.0517 −0.1913 0.3635 0.038*
C5G −0.0645 (3) 0.0104 (2) 0.32312 (14) 0.0255 (5)
C5H −0.1190 (3) 0.0864 (2) 0.40177 (14) 0.0276 (5)
H5HA −0.1338 0.0367 0.4516 0.033*
C5I −0.1523 (3) 0.2321 (2) 0.40970 (13) 0.0230 (5)
C5J −0.2098 (3) 0.3101 (2) 0.48906 (14) 0.0318 (6)
H5JA −0.2196 0.2628 0.5402 0.038*
C5K −0.2508 (3) 0.4502 (2) 0.49355 (15) 0.0393 (6)
H5KA −0.2877 0.5003 0.5475 0.047*
C5L −0.2383 (3) 0.5230 (2) 0.41624 (15) 0.0347 (6)
H5LA −0.2719 0.6200 0.4186 0.042*
C5M −0.1797 (3) 0.4549 (2) 0.34139 (15) 0.0298 (5)
H5MA −0.1677 0.5061 0.2920 0.036*
C5N −0.1344 (3) 0.3070 (2) 0.33320 (13) 0.0230 (5)
C10A 0.5771 (3) 0.6803 (2) 0.11646 (13) 0.0235 (5)
H10A 0.6577 0.6781 0.0671 0.028*
H10B 0.6232 0.6189 0.1591 0.028*
C10B 0.5667 (3) 0.8359 (2) 0.16236 (13) 0.0265 (5)
H10C 0.6835 0.8805 0.1670 0.032*
H10D 0.4955 0.8913 0.1250 0.032*
C10C 0.4915 (3) 0.8477 (2) 0.25444 (14) 0.0279 (5)
H10E 0.5718 0.8051 0.2943 0.033*
H10F 0.3823 0.7909 0.2514 0.033*
C10D 0.4574 (3) 1.0030 (2) 0.29382 (14) 0.0287 (5)
H10G 0.5637 1.0622 0.2916 0.034*
H10H 0.3681 1.0425 0.2574 0.034*
C10E 0.4000 (3) 1.0138 (2) 0.38747 (15) 0.0356 (6)
H10I 0.4938 0.9824 0.4246 0.043*
H10J 0.3004 0.9473 0.3904 0.043*
C10F 0.3500 (3) 1.1641 (2) 0.42523 (14) 0.0316 (6)
H10K 0.3292 1.1666 0.4884 0.047*
H10L 0.2453 1.1900 0.3950 0.047*
H10M 0.4430 1.2326 0.4166 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.0227 (2) 0.0162 (2) 0.0154 (2) −0.00037 (16) 0.00200 (15) 0.00351 (15)
N21 0.0227 (10) 0.0156 (8) 0.0174 (9) −0.0013 (7) 0.0034 (7) 0.0021 (7)
N22 0.0240 (10) 0.0184 (9) 0.0155 (9) 0.0016 (8) 0.0008 (7) 0.0030 (7)
C5 0.0243 (12) 0.0137 (10) 0.0171 (10) −0.0003 (9) 0.0026 (9) 0.0004 (8)
C6 0.0279 (13) 0.0145 (10) 0.0170 (11) 0.0015 (9) 0.0004 (9) 0.0020 (8)
C7 0.0307 (13) 0.0231 (11) 0.0212 (11) −0.0003 (10) −0.0011 (10) 0.0069 (9)
C8 0.0244 (12) 0.0235 (11) 0.0252 (12) −0.0005 (9) −0.0043 (9) 0.0048 (9)
C9 0.0219 (12) 0.0161 (10) 0.0198 (11) 0.0005 (9) 0.0000 (9) 0.0005 (9)
C10 0.0215 (12) 0.0177 (10) 0.0211 (11) 0.0032 (9) 0.0025 (9) −0.0015 (9)
C11 0.0208 (12) 0.0171 (10) 0.0204 (11) −0.0007 (9) 0.0021 (9) −0.0005 (9)
C12 0.0243 (12) 0.0245 (11) 0.0246 (12) −0.0043 (9) 0.0021 (9) 0.0047 (9)
C13 0.0282 (13) 0.0248 (11) 0.0221 (11) −0.0045 (10) 0.0024 (9) 0.0061 (9)
C14 0.0249 (12) 0.0138 (10) 0.0184 (10) −0.0005 (9) 0.0027 (9) 0.0028 (8)
C5A 0.0206 (12) 0.0199 (11) 0.0209 (11) −0.0033 (9) −0.0013 (9) 0.0036 (9)
C5B 0.0215 (12) 0.0224 (11) 0.0254 (12) −0.0028 (9) −0.0011 (9) 0.0050 (9)
C5C 0.0235 (12) 0.0243 (12) 0.0312 (13) −0.0006 (10) 0.0029 (10) 0.0029 (10)
C5D 0.0297 (14) 0.0295 (13) 0.0400 (14) 0.0025 (11) 0.0049 (11) 0.0001 (11)
C5E 0.0338 (15) 0.0204 (12) 0.0548 (17) 0.0030 (10) 0.0046 (12) 0.0073 (11)
C5F 0.0275 (14) 0.0275 (12) 0.0445 (15) 0.0023 (10) 0.0012 (11) 0.0166 (11)
C5G 0.0227 (12) 0.0242 (12) 0.0308 (12) −0.0018 (9) −0.0011 (10) 0.0088 (10)
C5H 0.0259 (13) 0.0333 (13) 0.0259 (12) −0.0043 (10) −0.0008 (10) 0.0135 (10)
C5I 0.0234 (12) 0.0244 (11) 0.0218 (11) −0.0032 (9) 0.0020 (9) 0.0056 (9)
C5J 0.0353 (14) 0.0375 (14) 0.0232 (12) −0.0075 (11) 0.0003 (10) 0.0075 (10)
C5K 0.0509 (17) 0.0376 (14) 0.0268 (13) −0.0036 (12) 0.0092 (12) −0.0069 (11)
C5L 0.0490 (17) 0.0188 (11) 0.0359 (14) 0.0024 (11) 0.0132 (12) −0.0006 (10)
C5M 0.0370 (14) 0.0257 (12) 0.0282 (13) −0.0016 (10) 0.0020 (10) 0.0090 (10)
C5N 0.0238 (12) 0.0220 (11) 0.0234 (11) −0.0015 (9) 0.0003 (9) 0.0035 (9)
C10A 0.0212 (12) 0.0290 (12) 0.0209 (11) −0.0013 (9) 0.0002 (9) 0.0059 (9)
C10B 0.0222 (12) 0.0306 (12) 0.0262 (12) −0.0058 (10) −0.0007 (10) 0.0035 (10)
C10C 0.0286 (13) 0.0284 (12) 0.0269 (12) −0.0013 (10) −0.0015 (10) 0.0048 (10)
C10D 0.0265 (13) 0.0316 (12) 0.0282 (12) −0.0031 (10) −0.0030 (10) 0.0057 (10)
C10E 0.0428 (16) 0.0354 (13) 0.0285 (13) 0.0020 (11) 0.0001 (11) 0.0033 (11)
C10F 0.0368 (15) 0.0288 (12) 0.0289 (13) 0.0039 (11) 0.0004 (11) 0.0019 (10)

Geometric parameters (Å, °)

Ni—N22 1.9570 (17) C5E—H5EA 0.9500
Ni—N22i 1.9570 (17) C5F—C5G 1.430 (3)
Ni—N21i 1.9632 (17) C5F—H5FA 0.9500
Ni—N21 1.9632 (17) C5G—C5H 1.399 (3)
N21—C6 1.389 (2) C5H—C5I 1.389 (3)
N21—C9 1.389 (3) C5H—H5HA 0.9500
N22—C14 1.384 (2) C5I—C5J 1.423 (3)
N22—C11 1.388 (3) C5I—C5N 1.446 (3)
C5—C6 1.382 (3) C5J—C5K 1.354 (3)
C5—C14i 1.385 (3) C5J—H5JA 0.9500
C5—C5A 1.501 (3) C5K—C5L 1.442 (3)
C6—C7 1.423 (3) C5K—H5KA 0.9500
C7—C8 1.346 (3) C5L—C5M 1.333 (3)
C7—H7A 0.9500 C5L—H5LA 0.9500
C8—C9 1.441 (3) C5M—C5N 1.433 (3)
C8—H8A 0.9500 C5M—H5MA 0.9500
C9—C10 1.390 (3) C10A—C10B 1.544 (3)
C10—C11 1.392 (3) C10A—H10A 0.9900
C10—C10A 1.521 (3) C10A—H10B 0.9900
C11—C12 1.436 (3) C10B—C10C 1.529 (3)
C12—C13 1.343 (3) C10B—H10C 0.9900
C12—H12A 0.9500 C10B—H10D 0.9900
C13—C14 1.427 (3) C10C—C10D 1.538 (3)
C13—H13A 0.9500 C10C—H10E 0.9900
C14—C5i 1.385 (3) C10C—H10F 0.9900
C5A—C5B 1.416 (3) C10D—C10E 1.501 (3)
C5A—C5N 1.417 (3) C10D—H10G 0.9900
C5B—C5C 1.435 (3) C10D—H10H 0.9900
C5B—C5G 1.440 (3) C10E—C10F 1.518 (3)
C5C—C5D 1.359 (3) C10E—H10I 0.9900
C5C—H5CA 0.9500 C10E—H10J 0.9900
C5D—C5E 1.426 (3) C10F—H10K 0.9800
C5D—H5DA 0.9500 C10F—H10L 0.9800
C5E—C5F 1.352 (3) C10F—H10M 0.9800
N22—Ni—N22i 180.00 (8) C5H—C5G—C5F 122.4 (2)
N22—Ni—N21i 91.02 (7) C5H—C5G—C5B 119.23 (19)
N22i—Ni—N21i 88.98 (7) C5F—C5G—C5B 118.4 (2)
N22—Ni—N21 88.98 (7) C5I—C5H—C5G 122.40 (19)
N22i—Ni—N21 91.02 (7) C5I—C5H—H5HA 118.8
N21i—Ni—N21 180.00 (9) C5G—C5H—H5HA 118.8
C6—N21—C9 104.27 (16) C5H—C5I—C5J 122.86 (19)
C6—N21—Ni 126.74 (14) C5H—C5I—C5N 118.78 (19)
C9—N21—Ni 128.98 (13) C5J—C5I—C5N 118.31 (19)
C14—N22—C11 104.18 (16) C5K—C5J—C5I 121.6 (2)
C14—N22—Ni 127.19 (14) C5K—C5J—H5JA 119.2
C11—N22—Ni 128.63 (13) C5I—C5J—H5JA 119.2
C6—C5—C14i 123.17 (18) C5J—C5K—C5L 119.8 (2)
C6—C5—C5A 118.53 (18) C5J—C5K—H5KA 120.1
C14i—C5—C5A 118.30 (18) C5L—C5K—H5KA 120.1
C5—C6—N21 126.01 (18) C5M—C5L—C5K 120.3 (2)
C5—C6—C7 123.21 (18) C5M—C5L—H5LA 119.8
N21—C6—C7 110.77 (18) C5K—C5L—H5LA 119.8
C8—C7—C6 107.78 (19) C5L—C5M—C5N 122.0 (2)
C8—C7—H7A 126.1 C5L—C5M—H5MA 119.0
C6—C7—H7A 126.1 C5N—C5M—H5MA 119.0
C7—C8—C9 106.63 (19) C5A—C5N—C5M 122.31 (19)
C7—C8—H8A 126.7 C5A—C5N—C5I 119.88 (18)
C9—C8—H8A 126.7 C5M—C5N—C5I 117.81 (18)
N21—C9—C10 125.85 (19) C10—C10A—C10B 112.21 (17)
N21—C9—C8 110.55 (17) C10—C10A—H10A 109.2
C10—C9—C8 123.6 (2) C10B—C10A—H10A 109.2
C9—C10—C11 121.1 (2) C10—C10A—H10B 109.2
C9—C10—C10A 121.00 (19) C10B—C10A—H10B 109.2
C11—C10—C10A 117.87 (18) H10A—C10A—H10B 107.9
N22—C11—C10 126.47 (18) C10C—C10B—C10A 113.98 (17)
N22—C11—C12 110.47 (18) C10C—C10B—H10C 108.8
C10—C11—C12 123.1 (2) C10A—C10B—H10C 108.8
C13—C12—C11 107.1 (2) C10C—C10B—H10D 108.8
C13—C12—H12A 126.4 C10A—C10B—H10D 108.8
C11—C12—H12A 126.4 H10C—C10B—H10D 107.7
C12—C13—C14 107.17 (19) C10B—C10C—C10D 113.40 (17)
C12—C13—H13A 126.4 C10B—C10C—H10E 108.9
C14—C13—H13A 126.4 C10D—C10C—H10E 108.9
N22—C14—C5i 125.85 (19) C10B—C10C—H10F 108.9
N22—C14—C13 111.04 (18) C10D—C10C—H10F 108.9
C5i—C14—C13 123.11 (18) H10E—C10C—H10F 107.7
C5B—C5A—C5N 120.05 (18) C10E—C10D—C10C 112.63 (18)
C5B—C5A—C5 120.47 (18) C10E—C10D—H10G 109.1
C5N—C5A—C5 119.47 (17) C10C—C10D—H10G 109.1
C5A—C5B—C5C 122.32 (19) C10E—C10D—H10H 109.1
C5A—C5B—C5G 119.53 (19) C10C—C10D—H10H 109.1
C5C—C5B—C5G 118.13 (18) H10G—C10D—H10H 107.8
C5D—C5C—C5B 121.2 (2) C10D—C10E—C10F 113.70 (18)
C5D—C5C—H5CA 119.4 C10D—C10E—H10I 108.8
C5B—C5C—H5CA 119.4 C10F—C10E—H10I 108.8
C5C—C5D—C5E 120.5 (2) C10D—C10E—H10J 108.8
C5C—C5D—H5DA 119.8 C10F—C10E—H10J 108.8
C5E—C5D—H5DA 119.8 H10I—C10E—H10J 107.7
C5F—C5E—C5D 120.3 (2) C10E—C10F—H10K 109.5
C5F—C5E—H5EA 119.9 C10E—C10F—H10L 109.5
C5D—C5E—H5EA 119.9 H10K—C10F—H10L 109.5
C5E—C5F—C5G 121.6 (2) C10E—C10F—H10M 109.5
C5E—C5F—H5FA 119.2 H10K—C10F—H10M 109.5
C5G—C5F—H5FA 119.2 H10L—C10F—H10M 109.5

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2783).

References

  1. Davis, N. K. S., Nicola, K. S., Pawlicki, M. & Anderson, H. L. (2008). Org. Lett.10, 3945–3947. [DOI] [PubMed]
  2. Fleischer, E. B., Miller, C. K. & Webb, L. E. (1964). J. Am. Chem. Soc.86, 2342–2348.
  3. Gallucci, J. C., Swepston, P. N. & Ibers, J. A. (1982). Acta Cryst. B38, 2134–2139.
  4. Hoard, J. L. (1973). Ann. N. Y. Acad. Sci.206, 18–31. [DOI] [PubMed]
  5. Hope, H. (1994). Prog. Inorg. Chem.41, 1–19.
  6. Lee, Y. J. & Scheidt, W. R. (1987). Struct. Bonding (Berlin), 64, 1–69.
  7. Rigaku (2008). CrystalClear . Rigaku/MSC, The Woodlands, Texas, USA.
  8. Runge, S., Senge, M. O. & Ruhlandt-Senge, K. (1999). Z. Naturforsch. Teil B54, 662–666.
  9. Senge, M. O. (2006). Chem. Commun. pp. 243–256. [DOI] [PubMed]
  10. Senge, M. O., Bischoff, I., Nelson, N. Y. & Smith, K. M. (1999). J. Porphyrins Phthalocyanines, 3, 99–116.
  11. Senge, M. O., Renner, M. W., Kalisch, W. W. & Fajer, J. (2000). J. Chem. Soc. Dalton Trans. pp. 381–385.
  12. Senge, M. O., Shaker, Y. M., Pintea, M., Ryppa, C., Hatscher, S. S., Ryan, A. & Sergeeva, Y. (2010). Eur. J. Org. Chem. pp. 237–258.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sooambar, C., Troiani, V., Bruno, C., Marcaccio, M., Paolucci, F., Listorti, A., Belbakra, A., Armaroli, N., Magistrato, A., De Zorzi, R., Geremia, S. & Bonifazi, D. (2009). Org. Biomol. Chem.7, 2402–2413. [DOI] [PubMed]
  15. Volz, H. & Schäffer, H. (1985). Chem. Ztg, 109, 308–309.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021434/ng2783sup1.cif

e-66-0m790-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021434/ng2783Isup2.hkl

e-66-0m790-Isup2.hkl (189.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES