Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 23;66(Pt 7):o1734. doi: 10.1107/S1600536810023317

(7E)-5-Benzyl-7-(2-chloro­benzyl­idene)-3-(2-chloro­phen­yl)-2-phenyl-3,3a,4,5,6,7-hexa­hydro-2H-pyrazolo­[4,3-c]pyridine

N S Karthikeyan a, B Uma Mahesh a, K Sathiyanarayanan a, P Raghavaiah b, R S Rathore c,*
PMCID: PMC3006872  PMID: 21587951

Abstract

In the title 2H-pyrazolo­[4,3-c]pyridine derivative, C32H27Cl2N3, the dihydro­pyrazole ring adopts an envelope conformation and the piperidine fused ring a twisted-chair conformation. Two short intra­molecular C—H⋯Cl contacts are observed. The crystal packing is characterized by dimeric C—Cl⋯π inter­actions involving the 5-benzyl ring, with Cl⋯centroid and closest atomic Cl⋯π distances of 3.778 (2) and 3.366 (4) Å, respectively.

Related literature

For the anti-inflammatory activity of 2H-pyrazolo­[4,3-c]pyridine derivatives, see Krapcho & Turk (1975). For π-halogen-dimer inter­actions and their role in host–guest chemistry, see: Noman et al. (2004); Nagaraj et al. (2005). graphic file with name e-66-o1734-scheme1.jpg

Experimental

Crystal data

  • C32H27Cl2N3

  • M r = 524.47

  • Monoclinic, Inline graphic

  • a = 13.7117 (7) Å

  • b = 15.4451 (6) Å

  • c = 13.6896 (9) Å

  • β = 113.135 (7)°

  • V = 2666.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 294 K

  • 0.36 × 0.26 × 0.22 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.909, T max = 0.943

  • 11774 measured reflections

  • 5436 independent reflections

  • 2483 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.098

  • S = 0.83

  • 5436 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023317/ng2791sup1.cif

e-66-o1734-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023317/ng2791Isup2.hkl

e-66-o1734-Isup2.hkl (260.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1 0.98 2.61 3.101 (2) 111
C27—H27⋯Cl2 0.93 2.68 3.043 (3) 104

Acknowledgments

The Bioinformatics Infrastructure Facility and the Single Crystal X-ray Diffractometer Facility at the University of Hyderabad are gratefully acknowledged are gratefully acknowledged for computation and data collection. RSR thanks the CSIR, New Delhi, for support under the scientist’s pool scheme and NSK thanks the CSIR, New Delhi, for a Senior Research Fellowship.

supplementary crystallographic information

Comment

Derivatives of 2H-pyrazolo[4,3-c]pyridine have been tested for anti-inflammatory activity (Krapcho & Turk, 1975). A search in Cambridge Structural Database (version 5.31) for such compounds retrieved zero hits. With a purpose to study hitherto unexplored structures of these compounds, we here report the synthesis and structural investigations on, 5-benzyl-(7E)-7-(2-chlorobenzylidene)-3-(2-chlorophenyl)-2-phenyl- 3,3a,4,5,6,7-hexahydro-2H-pyrazolo[4,3-c]pyridine, (I).

The structure of (I) with adopted atomic numbering scheme is shown in Fig 1. (I) is a racemic mixture. In the reported model, the stereogenic centers C3 and C3A possess R-configurations. The five-membered dihydropyrazole ring (N1/N2/C3/C3A/C7A) adopt an envelope conformation with atom C3 at the flap of the envelope (Ring puckering parameters are: q2 = 0.204 (2) Å, φ2 = 248.3 (6)°). The adjacent 6-membered piperidine ring (C3A/C4/N5/C6/C7/C7A) assumes a chair conformation which is substantially twisted from ideal geometry. The puckering parameters are as follows: q2 = 0.189 (2) Å, q3 = -0.468 (2) Å, θ = 158.0 (2)°, φ = 209.5 (8)°, and total puckering amplitude, Q = 0.505 (2) Å.

Two short intra-molecular contacts C3—H3···Cl1 and C27—H27···Cl2 were observed (Table 1). Intermolecular C—Halogen···π contact stabilizes the dimeric units in (I) (Fig 2). A dimer is formed by C29—Cl2···Cg5i [symmetry code (i): 1 - x, 1 - y, 1 - z]. The Cl2..Cg5 distance and C29—Cl2···Cg5 angle are 3.778 (2)Å and 141.2 (1)° respectively, whereas the minimum atomic distance in Cl2···π is 3.366 (4) Å. Cg5 is the centroid of (C21–C26) ring. The C—Halogen···π dimeric interactions [also referred as PHD; π-halogen-dimer interactions (Noman et al. 2004)] have been shown recently, to play an important role in host–guest chemistry (Nagaraj et al., 2005; references therein).

Experimental

1-benzyl-3, 5-dibenzylidenepiperidin-4-one (0.003 mol) and phenyl hydrazine (0.003 mol) were dissolved in 2-propanol. The reaction mixture was refluxed for 1–2 h on a water bath and tested with TLC at regular intervals for completeness of reaction. Following that, the resulting mixture was cooled and poured into crushed ice. The solid so obtained was separated, washed with water and subjected to column chromatography using ethyl acetate and n-hexane. Final yield 89%, m.p. 153–155° C. Suitable single crystals for data collection were grown from ethanol and tetrahydrofuran mixture in 1:1 ratio.

Refinement

H atoms were placed in their stereochemically expected positions and refined with the riding options. The distances with hydrogen atoms are: C(aromatic/sp2)—H = 0.93 Å, C(methylene)—H = 0.97 Å, C(methine)—H = 0.98 Å, and Uiso = 1.2 Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

A view of (I) with non-H atoms shown as probability ellipsoids at 30% levels (Farrugia, 1997). The radii of H atoms are on an arbitrary scale. Dashed lines indicate short intra-molecular C—H···Cl contacts.

Fig. 2.

Fig. 2.

Dimeric subunits linked by C—Halogen···π interaction in (I). Cg5 is the centroid of (C21—C26) ring.

Crystal data

C32H27Cl2N3 F(000) = 1096
Mr = 524.47 Dx = 1.307 Mg m3
Monoclinic, P21/c Melting point: 427(2) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 13.7117 (7) Å Cell parameters from 2998 reflections
b = 15.4451 (6) Å θ = 2.6–29.1°
c = 13.6896 (9) Å µ = 0.27 mm1
β = 113.135 (7)° T = 294 K
V = 2666.0 (2) Å3 Plate, colorless
Z = 4 0.36 × 0.26 × 0.22 mm

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 5436 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2483 reflections with I > 2σ(I)
graphite Rint = 0.049
Detector resolution: 16.3291 pixels mm-1 θmax = 26.4°, θmin = 2.6°
ω scan h = −14→17
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −19→17
Tmin = 0.909, Tmax = 0.943 l = −15→17
11774 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0389P)2] where P = (Fo2 + 2Fc2)/3
5436 reflections (Δ/σ)max < 0.001
334 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01-2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C3 0.68994 (17) 0.48100 (13) 0.39914 (17) 0.0384 (6)
H3 0.7343 0.4316 0.3979 0.046*
C3A 0.60177 (16) 0.44975 (13) 0.43353 (18) 0.0372 (6)
H3A 0.5847 0.4958 0.4735 0.045*
C4 0.62227 (17) 0.36610 (14) 0.49646 (19) 0.0466 (7)
H4A 0.6489 0.3225 0.4623 0.056*
H4B 0.6753 0.3756 0.5675 0.056*
C6 0.44171 (18) 0.31461 (13) 0.39584 (19) 0.0483 (7)
H6A 0.3770 0.2970 0.4031 0.058*
H6B 0.4665 0.2659 0.3671 0.058*
C7 0.41706 (18) 0.38915 (13) 0.31845 (19) 0.0399 (6)
C7A 0.51168 (17) 0.43857 (14) 0.32849 (19) 0.0396 (6)
C8 0.67598 (17) 0.52120 (13) 0.21565 (19) 0.0372 (6)
C9 0.78552 (18) 0.51570 (14) 0.24683 (19) 0.0440 (6)
H9 0.8286 0.5028 0.3170 0.053*
C10 0.8300 (2) 0.52943 (15) 0.1736 (2) 0.0538 (7)
H10 0.9033 0.5261 0.1954 0.065*
C11 0.7685 (2) 0.54792 (15) 0.0691 (2) 0.0565 (7)
H11 0.7992 0.5561 0.0202 0.068*
C12 0.6598 (2) 0.55403 (15) 0.0385 (2) 0.0563 (7)
H12 0.6173 0.5671 −0.0317 0.068*
C13 0.61374 (19) 0.54113 (14) 0.1102 (2) 0.0491 (7)
H13 0.5406 0.5458 0.0882 0.059*
C14 0.75983 (17) 0.55254 (13) 0.46627 (18) 0.0371 (6)
C15 0.86179 (18) 0.53885 (15) 0.54037 (19) 0.0496 (7)
C16 0.9251 (2) 0.60585 (19) 0.5984 (2) 0.0626 (8)
H16 0.9935 0.5946 0.6474 0.075*
C17 0.8869 (2) 0.68811 (19) 0.5834 (2) 0.0629 (8)
H17 0.9297 0.7336 0.6211 0.075*
C18 0.7853 (2) 0.70400 (16) 0.5126 (2) 0.0603 (8)
H18 0.7584 0.7601 0.5038 0.072*
C19 0.72281 (19) 0.63714 (15) 0.4546 (2) 0.0494 (7)
H19 0.6542 0.6489 0.4064 0.059*
C20 0.5425 (2) 0.25732 (14) 0.5690 (2) 0.0565 (7)
H20A 0.5710 0.2125 0.5381 0.068*
H20B 0.4757 0.2366 0.5688 0.068*
C21 0.6183 (2) 0.27240 (15) 0.6818 (2) 0.0503 (7)
C22 0.7124 (2) 0.22752 (18) 0.7258 (3) 0.0785 (10)
H22 0.7295 0.1863 0.6855 0.094*
C23 0.7823 (3) 0.2434 (2) 0.8303 (4) 0.0997 (14)
H23 0.8460 0.2132 0.8594 0.120*
C24 0.7569 (3) 0.3035 (2) 0.8899 (3) 0.0999 (14)
H24 0.8035 0.3141 0.9596 0.120*
C25 0.6636 (3) 0.34798 (18) 0.8477 (2) 0.0777 (9)
H25 0.6462 0.3886 0.8884 0.093*
C26 0.5955 (2) 0.33212 (16) 0.7442 (2) 0.0601 (8)
H26 0.5322 0.3628 0.7156 0.072*
C27 0.32178 (17) 0.41049 (14) 0.2455 (2) 0.0456 (6)
H27 0.3200 0.4618 0.2092 0.055*
C28 0.21940 (17) 0.36564 (15) 0.21350 (18) 0.0413 (6)
C29 0.12329 (18) 0.41044 (14) 0.1697 (2) 0.0454 (6)
C30 0.02629 (18) 0.36958 (16) 0.1313 (2) 0.0552 (7)
H30 −0.0359 0.4017 0.1019 0.066*
C31 0.0221 (2) 0.28080 (17) 0.1368 (2) 0.0593 (8)
H31 −0.0429 0.2524 0.1113 0.071*
C32 0.1142 (2) 0.23457 (15) 0.1800 (2) 0.0570 (8)
H32 0.1115 0.1746 0.1845 0.068*
C33 0.21102 (19) 0.27578 (15) 0.21688 (19) 0.0507 (7)
H33 0.2726 0.2428 0.2448 0.061*
N1 0.52729 (14) 0.47054 (11) 0.24903 (16) 0.0431 (5)
N2 0.62818 (14) 0.51001 (11) 0.28892 (15) 0.0403 (5)
N5 0.52271 (14) 0.33591 (11) 0.50228 (15) 0.0428 (5)
Cl1 0.91528 (6) 0.43491 (4) 0.56217 (7) 0.0870 (3)
Cl2 0.12374 (5) 0.52302 (4) 0.16351 (7) 0.0764 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C3 0.0318 (12) 0.0456 (13) 0.0375 (14) 0.0018 (11) 0.0133 (12) 0.0007 (12)
C3A 0.0334 (13) 0.0410 (14) 0.0401 (14) −0.0001 (10) 0.0174 (12) −0.0006 (12)
C4 0.0388 (14) 0.0504 (15) 0.0494 (16) −0.0005 (11) 0.0161 (14) 0.0036 (13)
C6 0.0433 (15) 0.0498 (15) 0.0512 (17) −0.0036 (12) 0.0179 (14) −0.0057 (13)
C7 0.0361 (14) 0.0483 (14) 0.0384 (15) −0.0021 (11) 0.0179 (13) −0.0016 (12)
C7A 0.0332 (14) 0.0460 (14) 0.0429 (16) 0.0006 (11) 0.0187 (13) 0.0023 (12)
C8 0.0335 (14) 0.0410 (13) 0.0380 (14) −0.0044 (11) 0.0152 (13) −0.0030 (12)
C9 0.0394 (15) 0.0571 (15) 0.0380 (15) 0.0010 (12) 0.0180 (13) −0.0014 (12)
C10 0.0424 (15) 0.0719 (17) 0.0555 (18) −0.0033 (13) 0.0281 (16) −0.0068 (15)
C11 0.0635 (19) 0.0644 (17) 0.0556 (19) −0.0102 (14) 0.0384 (17) −0.0052 (15)
C12 0.0599 (19) 0.0697 (17) 0.0403 (16) −0.0072 (14) 0.0208 (16) 0.0048 (14)
C13 0.0379 (14) 0.0639 (17) 0.0440 (16) −0.0046 (12) 0.0143 (14) 0.0015 (14)
C14 0.0351 (13) 0.0438 (14) 0.0352 (14) −0.0031 (11) 0.0167 (12) −0.0005 (12)
C15 0.0405 (14) 0.0607 (16) 0.0414 (15) −0.0023 (13) 0.0095 (14) −0.0021 (13)
C16 0.0460 (16) 0.084 (2) 0.0463 (18) −0.0079 (16) 0.0063 (15) −0.0097 (16)
C17 0.063 (2) 0.074 (2) 0.0553 (19) −0.0245 (16) 0.0269 (17) −0.0207 (16)
C18 0.070 (2) 0.0479 (15) 0.072 (2) −0.0065 (14) 0.0376 (19) −0.0086 (15)
C19 0.0418 (15) 0.0516 (16) 0.0548 (17) 0.0009 (13) 0.0187 (14) −0.0034 (14)
C20 0.0609 (17) 0.0449 (15) 0.0643 (19) −0.0002 (13) 0.0252 (17) 0.0074 (14)
C21 0.0457 (16) 0.0430 (15) 0.0597 (19) 0.0010 (13) 0.0179 (16) 0.0206 (15)
C22 0.063 (2) 0.0688 (19) 0.102 (3) 0.0148 (16) 0.031 (2) 0.037 (2)
C23 0.051 (2) 0.090 (3) 0.130 (4) 0.010 (2) 0.007 (3) 0.064 (3)
C24 0.073 (3) 0.095 (3) 0.090 (3) −0.032 (2) −0.013 (2) 0.049 (2)
C25 0.083 (2) 0.077 (2) 0.057 (2) −0.0231 (18) 0.010 (2) 0.0085 (18)
C26 0.0543 (18) 0.0576 (17) 0.0574 (19) −0.0043 (14) 0.0100 (17) 0.0125 (16)
C27 0.0397 (15) 0.0499 (14) 0.0486 (17) −0.0030 (12) 0.0189 (14) 0.0001 (13)
C28 0.0369 (14) 0.0516 (15) 0.0361 (15) −0.0030 (12) 0.0152 (13) −0.0033 (12)
C29 0.0399 (15) 0.0487 (14) 0.0493 (16) −0.0047 (12) 0.0193 (14) 0.0013 (13)
C30 0.0377 (15) 0.0598 (17) 0.0600 (19) 0.0001 (12) 0.0104 (15) 0.0037 (15)
C31 0.0448 (16) 0.0624 (18) 0.0586 (19) −0.0144 (14) 0.0072 (16) −0.0048 (15)
C32 0.0527 (17) 0.0477 (15) 0.0564 (18) −0.0077 (13) 0.0060 (16) −0.0058 (14)
C33 0.0448 (16) 0.0528 (16) 0.0465 (16) −0.0005 (12) 0.0093 (14) −0.0077 (13)
N1 0.0299 (11) 0.0542 (12) 0.0451 (13) −0.0051 (9) 0.0145 (11) −0.0001 (11)
N2 0.0287 (11) 0.0570 (12) 0.0350 (12) −0.0049 (9) 0.0124 (10) 0.0001 (10)
N5 0.0400 (12) 0.0443 (11) 0.0434 (12) −0.0051 (9) 0.0156 (11) 0.0044 (10)
Cl1 0.0653 (5) 0.0766 (5) 0.0839 (6) 0.0217 (4) −0.0087 (5) 0.0038 (4)
Cl2 0.0549 (4) 0.0535 (4) 0.1194 (7) 0.0007 (3) 0.0327 (5) 0.0127 (4)

Geometric parameters (Å, °)

C3—N2 1.480 (3) C17—C18 1.372 (3)
C3—C14 1.514 (3) C17—H17 0.9300
C3—C3A 1.537 (3) C18—C19 1.377 (3)
C3—H3 0.9800 C18—H18 0.9300
C3A—C7A 1.493 (3) C19—H19 0.9300
C3A—C4 1.517 (3) C20—N5 1.478 (3)
C3A—H3A 0.9800 C20—C21 1.503 (3)
C4—N5 1.474 (3) C20—H20A 0.9700
C4—H4A 0.9700 C20—H20B 0.9700
C4—H4B 0.9700 C21—C26 1.373 (3)
C6—N5 1.481 (3) C21—C22 1.377 (3)
C6—C7 1.510 (3) C22—C23 1.397 (4)
C6—H6A 0.9700 C22—H22 0.9300
C6—H6B 0.9700 C23—C24 1.368 (5)
C7—C27 1.337 (3) C23—H23 0.9300
C7—C7A 1.464 (3) C24—C25 1.364 (4)
C7A—N1 1.287 (3) C24—H24 0.9300
C8—C13 1.392 (3) C25—C26 1.379 (3)
C8—C9 1.393 (3) C25—H25 0.9300
C8—N2 1.408 (3) C26—H26 0.9300
C9—C10 1.379 (3) C27—C28 1.470 (3)
C9—H9 0.9300 C27—H27 0.9300
C10—C11 1.375 (3) C28—C33 1.395 (3)
C10—H10 0.9300 C28—C29 1.398 (3)
C11—C12 1.383 (3) C29—C30 1.376 (3)
C11—H11 0.9300 C29—Cl2 1.741 (2)
C12—C13 1.375 (3) C30—C31 1.376 (3)
C12—H12 0.9300 C30—H30 0.9300
C13—H13 0.9300 C31—C32 1.367 (3)
C14—C15 1.383 (3) C31—H31 0.9300
C14—C19 1.388 (3) C32—C33 1.376 (3)
C15—C16 1.383 (3) C32—H32 0.9300
C15—Cl1 1.741 (2) C33—H33 0.9300
C16—C17 1.359 (3) N1—N2 1.411 (2)
C16—H16 0.9300
N2—C3—C14 111.73 (17) C18—C17—H17 120.1
N2—C3—C3A 101.74 (17) C17—C18—C19 120.2 (2)
C14—C3—C3A 115.45 (19) C17—C18—H18 119.9
N2—C3—H3 109.2 C19—C18—H18 119.9
C14—C3—H3 109.2 C18—C19—C14 121.5 (2)
C3A—C3—H3 109.2 C18—C19—H19 119.2
C7A—C3A—C4 110.32 (17) C14—C19—H19 119.2
C7A—C3A—C3 101.19 (18) N5—C20—C21 113.11 (18)
C4—C3A—C3 116.68 (18) N5—C20—H20A 109.0
C7A—C3A—H3A 109.4 C21—C20—H20A 109.0
C4—C3A—H3A 109.4 N5—C20—H20B 109.0
C3—C3A—H3A 109.4 C21—C20—H20B 109.0
N5—C4—C3A 109.35 (17) H20A—C20—H20B 107.8
N5—C4—H4A 109.8 C26—C21—C22 118.0 (3)
C3A—C4—H4A 109.8 C26—C21—C20 120.6 (2)
N5—C4—H4B 109.8 C22—C21—C20 121.5 (3)
C3A—C4—H4B 109.8 C21—C22—C23 120.5 (3)
H4A—C4—H4B 108.3 C21—C22—H22 119.8
N5—C6—C7 113.30 (17) C23—C22—H22 119.8
N5—C6—H6A 108.9 C24—C23—C22 119.8 (3)
C7—C6—H6A 108.9 C24—C23—H23 120.1
N5—C6—H6B 108.9 C22—C23—H23 120.1
C7—C6—H6B 108.9 C25—C24—C23 120.3 (3)
H6A—C6—H6B 107.7 C25—C24—H24 119.8
C27—C7—C7A 120.7 (2) C23—C24—H24 119.8
C27—C7—C6 126.6 (2) C24—C25—C26 119.3 (3)
C7A—C7—C6 112.69 (19) C24—C25—H25 120.4
N1—C7A—C7 123.8 (2) C26—C25—H25 120.4
N1—C7A—C3A 114.9 (2) C21—C26—C25 122.1 (3)
C7—C7A—C3A 121.2 (2) C21—C26—H26 119.0
C13—C8—C9 118.6 (2) C25—C26—H26 119.0
C13—C8—N2 119.9 (2) C7—C27—C28 130.2 (2)
C9—C8—N2 121.5 (2) C7—C27—H27 114.9
C10—C9—C8 120.0 (2) C28—C27—H27 114.9
C10—C9—H9 120.0 C33—C28—C29 115.5 (2)
C8—C9—H9 120.0 C33—C28—C27 122.7 (2)
C11—C10—C9 121.4 (2) C29—C28—C27 121.6 (2)
C11—C10—H10 119.3 C30—C29—C28 122.9 (2)
C9—C10—H10 119.3 C30—C29—Cl2 117.43 (18)
C10—C11—C12 118.5 (3) C28—C29—Cl2 119.63 (17)
C10—C11—H11 120.7 C31—C30—C29 119.4 (2)
C12—C11—H11 120.7 C31—C30—H30 120.3
C13—C12—C11 121.1 (3) C29—C30—H30 120.3
C13—C12—H12 119.5 C32—C31—C30 119.6 (2)
C11—C12—H12 119.5 C32—C31—H31 120.2
C12—C13—C8 120.4 (2) C30—C31—H31 120.2
C12—C13—H13 119.8 C31—C32—C33 120.7 (2)
C8—C13—H13 119.8 C31—C32—H32 119.6
C15—C14—C19 116.5 (2) C33—C32—H32 119.6
C15—C14—C3 123.4 (2) C32—C33—C28 121.9 (2)
C19—C14—C3 120.10 (19) C32—C33—H33 119.1
C16—C15—C14 122.2 (2) C28—C33—H33 119.1
C16—C15—Cl1 117.7 (2) C7A—N1—N2 107.59 (19)
C14—C15—Cl1 120.18 (18) C8—N2—N1 115.95 (18)
C17—C16—C15 119.7 (2) C8—N2—C3 121.56 (17)
C17—C16—H16 120.2 N1—N2—C3 110.18 (17)
C15—C16—H16 120.2 C4—N5—C20 110.11 (18)
C16—C17—C18 119.9 (2) C4—N5—C6 111.69 (18)
C16—C17—H17 120.1 C20—N5—C6 108.06 (17)
N2—C3—C3A—C7A 18.3 (2) C26—C21—C22—C23 −0.6 (4)
C14—C3—C3A—C7A 139.43 (18) C20—C21—C22—C23 179.1 (2)
N2—C3—C3A—C4 137.96 (19) C21—C22—C23—C24 0.5 (5)
C14—C3—C3A—C4 −100.9 (2) C22—C23—C24—C25 0.0 (5)
C7A—C3A—C4—N5 −52.9 (2) C23—C24—C25—C26 −0.4 (5)
C3—C3A—C4—N5 −167.63 (18) C22—C21—C26—C25 0.2 (4)
N5—C6—C7—C27 −141.8 (2) C20—C21—C26—C25 −179.5 (2)
N5—C6—C7—C7A 39.4 (3) C24—C25—C26—C21 0.3 (4)
C27—C7—C7A—N1 −36.8 (3) C7A—C7—C27—C28 172.6 (2)
C6—C7—C7A—N1 142.1 (2) C6—C7—C27—C28 −6.1 (4)
C27—C7—C7A—C3A 147.8 (2) C7—C27—C28—C33 −31.2 (4)
C6—C7—C7A—C3A −33.3 (3) C7—C27—C28—C29 153.8 (3)
C4—C3A—C7A—N1 −135.4 (2) C33—C28—C29—C30 −0.6 (4)
C3—C3A—C7A—N1 −11.3 (2) C27—C28—C29—C30 174.7 (2)
C4—C3A—C7A—C7 40.4 (3) C33—C28—C29—Cl2 178.85 (18)
C3—C3A—C7A—C7 164.53 (19) C27—C28—C29—Cl2 −5.9 (3)
C13—C8—C9—C10 −0.4 (3) C28—C29—C30—C31 0.9 (4)
N2—C8—C9—C10 −178.2 (2) Cl2—C29—C30—C31 −178.6 (2)
C8—C9—C10—C11 −0.6 (4) C29—C30—C31—C32 −0.2 (4)
C9—C10—C11—C12 1.1 (4) C30—C31—C32—C33 −0.8 (4)
C10—C11—C12—C13 −0.6 (4) C31—C32—C33—C28 1.1 (4)
C11—C12—C13—C8 −0.3 (4) C29—C28—C33—C32 −0.4 (4)
C9—C8—C13—C12 0.8 (3) C27—C28—C33—C32 −175.6 (2)
N2—C8—C13—C12 178.6 (2) C7—C7A—N1—N2 −177.40 (19)
N2—C3—C14—C15 −140.5 (2) C3A—C7A—N1—N2 −1.7 (3)
C3A—C3—C14—C15 103.9 (3) C13—C8—N2—N1 35.8 (3)
N2—C3—C14—C19 39.0 (3) C9—C8—N2—N1 −146.42 (19)
C3A—C3—C14—C19 −76.6 (3) C13—C8—N2—C3 174.33 (19)
C19—C14—C15—C16 −1.5 (4) C9—C8—N2—C3 −7.9 (3)
C3—C14—C15—C16 178.0 (2) C7A—N1—N2—C8 158.2 (2)
C19—C14—C15—Cl1 179.33 (19) C7A—N1—N2—C3 15.1 (2)
C3—C14—C15—Cl1 −1.2 (3) C14—C3—N2—C8 74.5 (2)
C14—C15—C16—C17 0.3 (4) C3A—C3—N2—C8 −161.78 (18)
Cl1—C15—C16—C17 179.5 (2) C14—C3—N2—N1 −144.89 (18)
C15—C16—C17—C18 1.3 (4) C3A—C3—N2—N1 −21.2 (2)
C16—C17—C18—C19 −1.8 (4) C3A—C4—N5—C20 −176.51 (18)
C17—C18—C19—C14 0.6 (4) C3A—C4—N5—C6 63.4 (2)
C15—C14—C19—C18 1.1 (4) C21—C20—N5—C4 61.7 (3)
C3—C14—C19—C18 −178.5 (2) C21—C20—N5—C6 −176.1 (2)
N5—C20—C21—C26 59.8 (3) C7—C6—N5—C4 −56.7 (2)
N5—C20—C21—C22 −119.9 (2) C7—C6—N5—C20 −178.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···Cl1 0.98 2.61 3.101 (2) 111
C27—H27···Cl2 0.93 2.68 3.043 (3) 104

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2791).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Krapcho, J. & Turk, C. F. (1975). US Patent No. 3 923 816.
  3. Nagaraj, B., Narasimhamurthy, T., Yathirajan, H. S., Nagaraja, P., Narasegowda, R. S. & Rathore, R. S. (2005). Acta Cryst. C61, o177–o180. [DOI] [PubMed]
  4. Noman, A., Rehman, M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2004). J. Org. Biomol. Chem.2, 175–182. [DOI] [PubMed]
  5. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023317/ng2791sup1.cif

e-66-o1734-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023317/ng2791Isup2.hkl

e-66-o1734-Isup2.hkl (260.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES