Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 23;66(Pt 7):o1767. doi: 10.1107/S1600536810023640

3-Methyl-1-(prop-2-en-1-yl)quinoxalin-2(1H)-one

Youssef Ramli a, Rachid Slimani b, Hafid Zouihri c, Saïd Lazar b,*, E M Essassi d
PMCID: PMC3006875  PMID: 21587981

Abstract

In the mol­ecule of the title compound, C12H12N2O, the quinoxaline ring is planar with an r.m.s. deviation of 0.007 (15) Å. The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2)°. The crystal packing is stabilized by offset π–π stacking between the quinoxaline rings [centroid–centroid distance = 3.8832 (9) Å].

Related literature

For biological activity of quinoxaline derivatives, see: Kleim et al. (1995). For their anti­tumor, and anti­tuberculous properties, see: Abasolo et al. (1987); Rodrigo et al. (2002). For the anti­­fungal, herbicidal, anti­dyslipidemic and anti-oxidative activities of quinoxaline derivatives, see: Jampilek et al. (2005); Sashidhara et al. (2009); Watkins et al. (2009). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-o1767-scheme1.jpg

Experimental

Crystal data

  • C12H12N2O

  • M r = 200.24

  • Monoclinic, Inline graphic

  • a = 5.0722 (5) Å

  • b = 13.4707 (13) Å

  • c = 15.0507 (13) Å

  • β = 95.082 (5)°

  • V = 1024.31 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.31 × 0.13 mm

Data collection

  • Bruker X8 APEXII CCD area-detector diffractometer

  • 11850 measured reflections

  • 2546 independent reflections

  • 1726 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.151

  • S = 1.08

  • 2546 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810023640/dn2579sup1.cif

e-66-o1767-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023640/dn2579Isup2.hkl

e-66-o1767-Isup2.hkl (122.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the CNRST of Morocco for making this work possible.

supplementary crystallographic information

Comment

Quinoxaline derivatives are a very important class of nitrogen-containing compounds and have been widely used in dyes, pharmaceuticals and electrical/photochemical materials. Quinoxaline ring moiety constitute part of the chemical structures of various antibiotics such as Echinomycin, Levomycin and Actinoleutin that are known to inhibit growth of gram positive bacteria and are active against various transplantable tumors.

Quinoxaline derivatives were found to exhibit antimicrobial [Kleim et al. 1995], antitumor [Abasolo et al. 1987], and antituberculous activity [Rodrigo et al.2002]. They, also, exhibit interesting antifungal, herbicidal, Antidyslipidemic and antioxidative activities of quinoxaline derivatives, see: (Jampilek et al. 2005, Sashidhara et al. 2009, Watkins et al. 2009).

The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2) (Fig. 1). Bond lengths and angles in title molecule are normal (Allen et al., 1987). The crystal packing is stabilized by offset π-π stacking between the quinoxalin rings.

Experimental

To a solution of 3-methylquinoxali-2(1H)-one (1 g) in 20 ml of dimethylformamide was added allylchloride (0.85 ml),K2CO3 (0.95 g) and catalytic amont of tetrabutylammonium bromide.The mixture was stirred at room temperature for 24 h.Then the solvent was remdove under reduce pressure,the residue was cristallized in ethanol to afford the product.

Refinement

Although found in a difference map, H atoms were introduced in calculated positions and treated as riding with C—H = 0.96 Å for methyl groups, C—H = 0.93 Å for aromatic and C—H = 0.97 Å for methine with U iso (H) = 1.2Ueq (aromatic, methine ) or U iso (H) = 1.5Ueq (methyl).

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

: Packing view of the crystal structure of the title compound.

Crystal data

C12H12N2O F(000) = 424
Mr = 200.24 Dx = 1.298 Mg m3
Monoclinic, P21/c Melting point: 1486 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 5.0722 (5) Å Cell parameters from 2764 reflections
b = 13.4707 (13) Å θ = 2.4–27.4°
c = 15.0507 (13) Å µ = 0.09 mm1
β = 95.082 (5)° T = 296 K
V = 1024.31 (17) Å3 Block, colourless
Z = 4 0.32 × 0.31 × 0.13 mm

Data collection

Bruker X8 APEXII CCD area-detector diffractometer 1726 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.049
graphite θmax = 28.3°, θmin = 2.7°
φ and ω scans h = −6→6
11850 measured reflections k = 0→17
2546 independent reflections l = 0→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.0888P] where P = (Fo2 + 2Fc2)/3
2546 reflections (Δ/σ)max = 0.001
137 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Experimental. The data collection nominally covered a sphere of reciprocal space, by a combination of seven sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.5° in ω and 30 s in time. The crystal-to-detector distance was 37.5 mm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimatedusing the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL datawill be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.3390 (2) 0.34712 (9) 0.06022 (9) 0.0657 (4)
N1 −0.0193 (2) 0.29591 (9) 0.16502 (8) 0.0408 (3)
N2 0.1311 (2) 0.49458 (9) 0.18738 (8) 0.0445 (3)
C1 0.2649 (3) 0.41959 (11) 0.23590 (9) 0.0408 (3)
C2 0.4769 (3) 0.44552 (13) 0.29645 (10) 0.0514 (4)
H2 0.5253 0.5119 0.3030 0.062*
C3 0.6150 (3) 0.37488 (15) 0.34638 (11) 0.0589 (5)
H3 0.7560 0.3931 0.3868 0.071*
C4 0.5434 (3) 0.27599 (15) 0.33625 (11) 0.0579 (5)
H4 0.6364 0.2278 0.3704 0.069*
C5 0.3375 (3) 0.24845 (13) 0.27651 (11) 0.0503 (4)
H5 0.2932 0.1817 0.2698 0.060*
C6 0.1937 (3) 0.31975 (11) 0.22568 (9) 0.0395 (3)
C7 −0.1541 (3) 0.36731 (11) 0.11482 (10) 0.0441 (4)
C8 −0.0643 (3) 0.47053 (11) 0.13088 (9) 0.0424 (4)
C9 −0.2158 (3) 0.54800 (12) 0.07845 (11) 0.0543 (4)
H9A −0.3878 0.5548 0.0997 0.081*
H9B −0.2343 0.5293 0.0167 0.081*
H9C −0.1233 0.6101 0.0850 0.081*
C10 −0.1160 (3) 0.19385 (11) 0.15522 (11) 0.0483 (4)
H10A −0.3032 0.1956 0.1355 0.058*
H10B −0.0975 0.1621 0.2133 0.058*
C11 0.0207 (3) 0.13211 (13) 0.09201 (12) 0.0578 (5)
H11 −0.0243 0.0652 0.0896 0.069*
C12 0.1942 (4) 0.16040 (15) 0.04015 (13) 0.0669 (5)
H12A 0.2467 0.2265 0.0398 0.080*
H12B 0.2672 0.1147 0.0030 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0682 (8) 0.0524 (8) 0.0700 (8) −0.0060 (6) −0.0296 (7) 0.0027 (6)
N1 0.0443 (6) 0.0358 (7) 0.0413 (6) −0.0016 (5) −0.0024 (5) 0.0006 (5)
N2 0.0518 (7) 0.0402 (7) 0.0407 (6) −0.0005 (5) −0.0013 (5) −0.0018 (5)
C1 0.0435 (7) 0.0433 (9) 0.0353 (7) 0.0004 (6) 0.0020 (6) −0.0008 (6)
C2 0.0527 (9) 0.0550 (10) 0.0452 (8) −0.0061 (7) −0.0038 (7) −0.0033 (7)
C3 0.0527 (9) 0.0755 (13) 0.0458 (9) −0.0016 (8) −0.0107 (7) −0.0006 (8)
C4 0.0592 (10) 0.0648 (12) 0.0474 (9) 0.0098 (8) −0.0080 (7) 0.0103 (8)
C5 0.0568 (9) 0.0471 (9) 0.0460 (8) 0.0046 (7) −0.0014 (7) 0.0053 (7)
C6 0.0416 (7) 0.0415 (9) 0.0352 (7) 0.0006 (6) 0.0026 (6) −0.0005 (6)
C7 0.0464 (8) 0.0423 (9) 0.0420 (8) 0.0003 (6) −0.0045 (6) −0.0002 (6)
C8 0.0487 (8) 0.0398 (8) 0.0380 (7) 0.0027 (6) 0.0003 (6) −0.0005 (6)
C9 0.0653 (10) 0.0439 (9) 0.0518 (9) 0.0069 (7) −0.0059 (8) 0.0015 (7)
C10 0.0488 (8) 0.0387 (9) 0.0560 (9) −0.0052 (6) −0.0032 (7) 0.0022 (7)
C11 0.0625 (10) 0.0455 (10) 0.0633 (10) −0.0042 (8) −0.0060 (9) −0.0077 (8)
C12 0.0696 (11) 0.0701 (13) 0.0602 (11) −0.0030 (9) 0.0008 (9) −0.0162 (9)

Geometric parameters (Å, °)

O1—C7 1.2215 (18) C5—C6 1.393 (2)
N1—C7 1.3683 (19) C5—H5 0.9300
N1—C6 1.3889 (18) C7—C8 1.476 (2)
N1—C10 1.4629 (19) C8—C9 1.482 (2)
N2—C8 1.2887 (18) C9—H9A 0.9600
N2—C1 1.3881 (19) C9—H9B 0.9600
C1—C2 1.391 (2) C9—H9C 0.9600
C1—C6 1.397 (2) C10—C11 1.481 (2)
C2—C3 1.367 (2) C10—H10A 0.9700
C2—H2 0.9300 C10—H10B 0.9700
C3—C4 1.386 (3) C11—C12 1.285 (3)
C3—H3 0.9300 C11—H11 0.9300
C4—C5 1.368 (2) C12—H12A 0.9300
C4—H4 0.9300 C12—H12B 0.9300
C7—N1—C6 121.48 (13) O1—C7—C8 121.81 (14)
C7—N1—C10 117.26 (12) N1—C7—C8 116.08 (13)
C6—N1—C10 121.20 (12) N2—C8—C7 123.57 (13)
C8—N2—C1 118.41 (13) N2—C8—C9 120.44 (14)
N2—C1—C2 118.39 (14) C7—C8—C9 115.99 (13)
N2—C1—C6 122.20 (13) C8—C9—H9A 109.5
C2—C1—C6 119.41 (14) C8—C9—H9B 109.5
C3—C2—C1 120.95 (16) H9A—C9—H9B 109.5
C3—C2—H2 119.5 C8—C9—H9C 109.5
C1—C2—H2 119.5 H9A—C9—H9C 109.5
C2—C3—C4 119.49 (15) H9B—C9—H9C 109.5
C2—C3—H3 120.3 N1—C10—C11 114.87 (13)
C4—C3—H3 120.3 N1—C10—H10A 108.6
C5—C4—C3 120.70 (16) C11—C10—H10A 108.6
C5—C4—H4 119.7 N1—C10—H10B 108.6
C3—C4—H4 119.7 C11—C10—H10B 108.6
C4—C5—C6 120.41 (16) H10A—C10—H10B 107.5
C4—C5—H5 119.8 C12—C11—C10 127.48 (17)
C6—C5—H5 119.8 C12—C11—H11 116.3
N1—C6—C5 122.71 (14) C10—C11—H11 116.3
N1—C6—C1 118.25 (13) C11—C12—H12A 120.0
C5—C6—C1 119.04 (14) C11—C12—H12B 120.0
O1—C7—N1 122.11 (14) H12A—C12—H12B 120.0
C12—C11—C10—N1 −6.7 (3)

Table 1 Offset π–π stacking between the quinoxaline rings.

Cg1 is the centroid of ring N1,C6,C1,N2,C8,C7 and Cg2 the centroid of ring C1–C6.

Centroid-to-centroid(Å) plane-to-plane(Å) offset(°)
Cg1–Cg2i 3.8832 (9) 3.509 25.4

Symmetry code: (i) -1+x, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2579).

References

  1. Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. J. (1987). Heterocycl. Chem.24, 1771–1775.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem.1, 591–599. [DOI] [PubMed]
  8. Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother.39, 2253–2257. [DOI] [PMC free article] [PubMed]
  9. Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem.8, 137–143.
  10. Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem.44, 1813–1818. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem.41, 580–585.
  14. Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810023640/dn2579sup1.cif

e-66-o1767-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023640/dn2579Isup2.hkl

e-66-o1767-Isup2.hkl (122.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES