Abstract
In the molecule of the title compound, C12H12N2O, the quinoxaline ring is planar with an r.m.s. deviation of 0.007 (15) Å. The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2)°. The crystal packing is stabilized by offset π–π stacking between the quinoxaline rings [centroid–centroid distance = 3.8832 (9) Å].
Related literature
For biological activity of quinoxaline derivatives, see: Kleim et al. (1995 ▶). For their antitumor, and antituberculous properties, see: Abasolo et al. (1987 ▶); Rodrigo et al. (2002 ▶). For the antifungal, herbicidal, antidyslipidemic and anti-oxidative activities of quinoxaline derivatives, see: Jampilek et al. (2005 ▶); Sashidhara et al. (2009 ▶); Watkins et al. (2009 ▶). For bond-length data, see: Allen et al. (1987 ▶).
Experimental
Crystal data
C12H12N2O
M r = 200.24
Monoclinic,
a = 5.0722 (5) Å
b = 13.4707 (13) Å
c = 15.0507 (13) Å
β = 95.082 (5)°
V = 1024.31 (17) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 296 K
0.32 × 0.31 × 0.13 mm
Data collection
Bruker X8 APEXII CCD area-detector diffractometer
11850 measured reflections
2546 independent reflections
1726 reflections with I > 2σ(I)
R int = 0.049
Refinement
R[F 2 > 2σ(F 2)] = 0.051
wR(F 2) = 0.151
S = 1.08
2546 reflections
137 parameters
H-atom parameters constrained
Δρmax = 0.23 e Å−3
Δρmin = −0.17 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 ▶), ORTEP-3 for Windows (Farrugia, 1997 ▶) and PLATON (Spek, 2009 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶) and publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810023640/dn2579sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023640/dn2579Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the CNRST of Morocco for making this work possible.
supplementary crystallographic information
Comment
Quinoxaline derivatives are a very important class of nitrogen-containing compounds and have been widely used in dyes, pharmaceuticals and electrical/photochemical materials. Quinoxaline ring moiety constitute part of the chemical structures of various antibiotics such as Echinomycin, Levomycin and Actinoleutin that are known to inhibit growth of gram positive bacteria and are active against various transplantable tumors.
Quinoxaline derivatives were found to exhibit antimicrobial [Kleim et al. 1995], antitumor [Abasolo et al. 1987], and antituberculous activity [Rodrigo et al.2002]. They, also, exhibit interesting antifungal, herbicidal, Antidyslipidemic and antioxidative activities of quinoxaline derivatives, see: (Jampilek et al. 2005, Sashidhara et al. 2009, Watkins et al. 2009).
The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2) (Fig. 1). Bond lengths and angles in title molecule are normal (Allen et al., 1987). The crystal packing is stabilized by offset π-π stacking between the quinoxalin rings.
Experimental
To a solution of 3-methylquinoxali-2(1H)-one (1 g) in 20 ml of dimethylformamide was added allylchloride (0.85 ml),K2CO3 (0.95 g) and catalytic amont of tetrabutylammonium bromide.The mixture was stirred at room temperature for 24 h.Then the solvent was remdove under reduce pressure,the residue was cristallized in ethanol to afford the product.
Refinement
Although found in a difference map, H atoms were introduced in calculated positions and treated as riding with C—H = 0.96 Å for methyl groups, C—H = 0.93 Å for aromatic and C—H = 0.97 Å for methine with U iso (H) = 1.2Ueq (aromatic, methine ) or U iso (H) = 1.5Ueq (methyl).
Figures
Fig. 1.
: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
: Packing view of the crystal structure of the title compound.
Crystal data
| C12H12N2O | F(000) = 424 |
| Mr = 200.24 | Dx = 1.298 Mg m−3 |
| Monoclinic, P21/c | Melting point: 1486 K |
| Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
| a = 5.0722 (5) Å | Cell parameters from 2764 reflections |
| b = 13.4707 (13) Å | θ = 2.4–27.4° |
| c = 15.0507 (13) Å | µ = 0.09 mm−1 |
| β = 95.082 (5)° | T = 296 K |
| V = 1024.31 (17) Å3 | Block, colourless |
| Z = 4 | 0.32 × 0.31 × 0.13 mm |
Data collection
| Bruker X8 APEXII CCD area-detector diffractometer | 1726 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.049 |
| graphite | θmax = 28.3°, θmin = 2.7° |
| φ and ω scans | h = −6→6 |
| 11850 measured reflections | k = 0→17 |
| 2546 independent reflections | l = 0→20 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.151 | H-atom parameters constrained |
| S = 1.08 | w = 1/[σ2(Fo2) + (0.0723P)2 + 0.0888P] where P = (Fo2 + 2Fc2)/3 |
| 2546 reflections | (Δ/σ)max = 0.001 |
| 137 parameters | Δρmax = 0.23 e Å−3 |
| 0 restraints | Δρmin = −0.17 e Å−3 |
Special details
| Experimental. The data collection nominally covered a sphere of reciprocal space, by a combination of seven sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.5° in ω and 30 s in time. The crystal-to-detector distance was 37.5 mm. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimatedusing the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL datawill be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | −0.3390 (2) | 0.34712 (9) | 0.06022 (9) | 0.0657 (4) | |
| N1 | −0.0193 (2) | 0.29591 (9) | 0.16502 (8) | 0.0408 (3) | |
| N2 | 0.1311 (2) | 0.49458 (9) | 0.18738 (8) | 0.0445 (3) | |
| C1 | 0.2649 (3) | 0.41959 (11) | 0.23590 (9) | 0.0408 (3) | |
| C2 | 0.4769 (3) | 0.44552 (13) | 0.29645 (10) | 0.0514 (4) | |
| H2 | 0.5253 | 0.5119 | 0.3030 | 0.062* | |
| C3 | 0.6150 (3) | 0.37488 (15) | 0.34638 (11) | 0.0589 (5) | |
| H3 | 0.7560 | 0.3931 | 0.3868 | 0.071* | |
| C4 | 0.5434 (3) | 0.27599 (15) | 0.33625 (11) | 0.0579 (5) | |
| H4 | 0.6364 | 0.2278 | 0.3704 | 0.069* | |
| C5 | 0.3375 (3) | 0.24845 (13) | 0.27651 (11) | 0.0503 (4) | |
| H5 | 0.2932 | 0.1817 | 0.2698 | 0.060* | |
| C6 | 0.1937 (3) | 0.31975 (11) | 0.22568 (9) | 0.0395 (3) | |
| C7 | −0.1541 (3) | 0.36731 (11) | 0.11482 (10) | 0.0441 (4) | |
| C8 | −0.0643 (3) | 0.47053 (11) | 0.13088 (9) | 0.0424 (4) | |
| C9 | −0.2158 (3) | 0.54800 (12) | 0.07845 (11) | 0.0543 (4) | |
| H9A | −0.3878 | 0.5548 | 0.0997 | 0.081* | |
| H9B | −0.2343 | 0.5293 | 0.0167 | 0.081* | |
| H9C | −0.1233 | 0.6101 | 0.0850 | 0.081* | |
| C10 | −0.1160 (3) | 0.19385 (11) | 0.15522 (11) | 0.0483 (4) | |
| H10A | −0.3032 | 0.1956 | 0.1355 | 0.058* | |
| H10B | −0.0975 | 0.1621 | 0.2133 | 0.058* | |
| C11 | 0.0207 (3) | 0.13211 (13) | 0.09201 (12) | 0.0578 (5) | |
| H11 | −0.0243 | 0.0652 | 0.0896 | 0.069* | |
| C12 | 0.1942 (4) | 0.16040 (15) | 0.04015 (13) | 0.0669 (5) | |
| H12A | 0.2467 | 0.2265 | 0.0398 | 0.080* | |
| H12B | 0.2672 | 0.1147 | 0.0030 | 0.080* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0682 (8) | 0.0524 (8) | 0.0700 (8) | −0.0060 (6) | −0.0296 (7) | 0.0027 (6) |
| N1 | 0.0443 (6) | 0.0358 (7) | 0.0413 (6) | −0.0016 (5) | −0.0024 (5) | 0.0006 (5) |
| N2 | 0.0518 (7) | 0.0402 (7) | 0.0407 (6) | −0.0005 (5) | −0.0013 (5) | −0.0018 (5) |
| C1 | 0.0435 (7) | 0.0433 (9) | 0.0353 (7) | 0.0004 (6) | 0.0020 (6) | −0.0008 (6) |
| C2 | 0.0527 (9) | 0.0550 (10) | 0.0452 (8) | −0.0061 (7) | −0.0038 (7) | −0.0033 (7) |
| C3 | 0.0527 (9) | 0.0755 (13) | 0.0458 (9) | −0.0016 (8) | −0.0107 (7) | −0.0006 (8) |
| C4 | 0.0592 (10) | 0.0648 (12) | 0.0474 (9) | 0.0098 (8) | −0.0080 (7) | 0.0103 (8) |
| C5 | 0.0568 (9) | 0.0471 (9) | 0.0460 (8) | 0.0046 (7) | −0.0014 (7) | 0.0053 (7) |
| C6 | 0.0416 (7) | 0.0415 (9) | 0.0352 (7) | 0.0006 (6) | 0.0026 (6) | −0.0005 (6) |
| C7 | 0.0464 (8) | 0.0423 (9) | 0.0420 (8) | 0.0003 (6) | −0.0045 (6) | −0.0002 (6) |
| C8 | 0.0487 (8) | 0.0398 (8) | 0.0380 (7) | 0.0027 (6) | 0.0003 (6) | −0.0005 (6) |
| C9 | 0.0653 (10) | 0.0439 (9) | 0.0518 (9) | 0.0069 (7) | −0.0059 (8) | 0.0015 (7) |
| C10 | 0.0488 (8) | 0.0387 (9) | 0.0560 (9) | −0.0052 (6) | −0.0032 (7) | 0.0022 (7) |
| C11 | 0.0625 (10) | 0.0455 (10) | 0.0633 (10) | −0.0042 (8) | −0.0060 (9) | −0.0077 (8) |
| C12 | 0.0696 (11) | 0.0701 (13) | 0.0602 (11) | −0.0030 (9) | 0.0008 (9) | −0.0162 (9) |
Geometric parameters (Å, °)
| O1—C7 | 1.2215 (18) | C5—C6 | 1.393 (2) |
| N1—C7 | 1.3683 (19) | C5—H5 | 0.9300 |
| N1—C6 | 1.3889 (18) | C7—C8 | 1.476 (2) |
| N1—C10 | 1.4629 (19) | C8—C9 | 1.482 (2) |
| N2—C8 | 1.2887 (18) | C9—H9A | 0.9600 |
| N2—C1 | 1.3881 (19) | C9—H9B | 0.9600 |
| C1—C2 | 1.391 (2) | C9—H9C | 0.9600 |
| C1—C6 | 1.397 (2) | C10—C11 | 1.481 (2) |
| C2—C3 | 1.367 (2) | C10—H10A | 0.9700 |
| C2—H2 | 0.9300 | C10—H10B | 0.9700 |
| C3—C4 | 1.386 (3) | C11—C12 | 1.285 (3) |
| C3—H3 | 0.9300 | C11—H11 | 0.9300 |
| C4—C5 | 1.368 (2) | C12—H12A | 0.9300 |
| C4—H4 | 0.9300 | C12—H12B | 0.9300 |
| C7—N1—C6 | 121.48 (13) | O1—C7—C8 | 121.81 (14) |
| C7—N1—C10 | 117.26 (12) | N1—C7—C8 | 116.08 (13) |
| C6—N1—C10 | 121.20 (12) | N2—C8—C7 | 123.57 (13) |
| C8—N2—C1 | 118.41 (13) | N2—C8—C9 | 120.44 (14) |
| N2—C1—C2 | 118.39 (14) | C7—C8—C9 | 115.99 (13) |
| N2—C1—C6 | 122.20 (13) | C8—C9—H9A | 109.5 |
| C2—C1—C6 | 119.41 (14) | C8—C9—H9B | 109.5 |
| C3—C2—C1 | 120.95 (16) | H9A—C9—H9B | 109.5 |
| C3—C2—H2 | 119.5 | C8—C9—H9C | 109.5 |
| C1—C2—H2 | 119.5 | H9A—C9—H9C | 109.5 |
| C2—C3—C4 | 119.49 (15) | H9B—C9—H9C | 109.5 |
| C2—C3—H3 | 120.3 | N1—C10—C11 | 114.87 (13) |
| C4—C3—H3 | 120.3 | N1—C10—H10A | 108.6 |
| C5—C4—C3 | 120.70 (16) | C11—C10—H10A | 108.6 |
| C5—C4—H4 | 119.7 | N1—C10—H10B | 108.6 |
| C3—C4—H4 | 119.7 | C11—C10—H10B | 108.6 |
| C4—C5—C6 | 120.41 (16) | H10A—C10—H10B | 107.5 |
| C4—C5—H5 | 119.8 | C12—C11—C10 | 127.48 (17) |
| C6—C5—H5 | 119.8 | C12—C11—H11 | 116.3 |
| N1—C6—C5 | 122.71 (14) | C10—C11—H11 | 116.3 |
| N1—C6—C1 | 118.25 (13) | C11—C12—H12A | 120.0 |
| C5—C6—C1 | 119.04 (14) | C11—C12—H12B | 120.0 |
| O1—C7—N1 | 122.11 (14) | H12A—C12—H12B | 120.0 |
| C12—C11—C10—N1 | −6.7 (3) |
Table 1 Offset π–π stacking between the quinoxaline rings.
Cg1 is the centroid of ring N1,C6,C1,N2,C8,C7 and Cg2 the centroid of ring C1–C6.
| Centroid-to-centroid(Å) | plane-to-plane(Å) | offset(°) | |
| Cg1–Cg2i | 3.8832 (9) | 3.509 | 25.4 |
Symmetry code: (i) -1+x, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2579).
References
- Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. J. (1987). Heterocycl. Chem.24, 1771–1775.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem.1, 591–599. [DOI] [PubMed]
- Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother.39, 2253–2257. [DOI] [PMC free article] [PubMed]
- Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem.8, 137–143.
- Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem.44, 1813–1818. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem.41, 580–585.
- Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810023640/dn2579sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023640/dn2579Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


