Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 23;66(Pt 7):o1741. doi: 10.1107/S1600536810023214

2-O-tert-Butyl­dimethyl­silyl-4,6-O-ethyl­idene-myo-insitol 1,3,5-orthoformate

Zhouqin Xu a, Qiang Wang a,*, Yanchun Sun b
PMCID: PMC3006906  PMID: 21587958

Abstract

In the title compound, C15H26O6Si, the dioxa six-membered ring bonded to the myo-inositol skeleton is in a boat conformation while the rest of the six-membered rings adopt chair conformations.

Related literature

myo-Inositol orthoesters have been used extensively for the synthesis of phospho­inositols and their derivatives, see: Das & Shashidhar (1997); Sureshan et al. (2003); Potter & Lampe (1995). For the synthesis of the title compound, see: Li & Vasella (1993). For a related structure, see: Angyal (2000). graphic file with name e-66-o1741-scheme1.jpg

Experimental

Crystal data

  • C15H26O6Si

  • M r = 330.45

  • Orthorhombic, Inline graphic

  • a = 12.0170 (4) Å

  • b = 11.2808 (3) Å

  • c = 25.6942 (8) Å

  • V = 3483.14 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 297 K

  • 0.22 × 0.21 × 0.17 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.966, T max = 0.973

  • 55999 measured reflections

  • 4060 independent reflections

  • 2035 reflections with I > 2σ(I)

  • R int = 0.102

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.149

  • S = 1.00

  • 4060 reflections

  • 205 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023214/pv2294sup1.cif

e-66-o1741-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023214/pv2294Isup2.hkl

e-66-o1741-Isup2.hkl (199.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Henan Polytechnic University Foundation for Doctor Teachers (B2010–65) and the Henan Polytechnic University Foundation for the Youth (P051102). The authors thank Drs L. Yang, D. Zhao and Z. Z. Zhang for their assistance with the data collection and analysis.

supplementary crystallographic information

Comment

myo-inositol orthoesters have been used extensivedly for the synthesis of phosphoinositols (Das & Shashidhar, 1997; Sureshan et al., 2003), their derivatives and other compounds with interesting properties (Potter & Lampe, 1995). We present here the crystal structure of the title compound, which is a key intermediate for the synthesis of phosphorylated myo-inositol derivatives (Angyal, 2000).

The bond lengths and angles in the title compound (Fig. 1) are in normal range and agree well with the corresponding bond lengths and angles reported for a related structure (Angyal, 2000). In the title molecule, the six-membered ring containing O1 and O2 is in a boat conformation, the other six-membered rings are in chair conformations. The crystal packing is stabilized by van der Waals forces.

Experimental

The title compound was prepared according to the literature (Li & Vasella, 1993). Single crystals suitable for X-ray diffraction were prepared by slow evaperation from a solution of ethyl acetate and petroleum ether (1:4).

Refinement

All H atoms were placed in idealized positions (C—H = 0.98 and 0.96 Å for methyne and methyl H atoms, respectively) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(methyne C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atomic-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound, viewed down the b-axis.

Crystal data

C15H26O6Si F(000) = 1424
Mr = 330.45 Dx = 1.260 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3612 reflections
a = 12.0170 (4) Å θ = 2.3–18.5°
b = 11.2808 (3) Å µ = 0.16 mm1
c = 25.6942 (8) Å T = 297 K
V = 3483.14 (18) Å3 Block, colorless
Z = 8 0.22 × 0.21 × 0.17 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 4060 independent reflections
Radiation source: fine-focus sealed tube 2035 reflections with I > 2σ(I)
graphite Rint = 0.102
φ and ω scans θmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −15→15
Tmin = 0.966, Tmax = 0.973 k = −14→14
55999 measured reflections l = −33→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0588P)2 + 1.0231P] where P = (Fo2 + 2Fc2)/3
4060 reflections (Δ/σ)max = 0.001
205 parameters Δρmax = 0.24 e Å3
18 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.0701 (3) 0.6537 (3) 0.59939 (13) 0.0839 (10)
H1A 1.1352 0.6900 0.5848 0.126*
H1B 1.0112 0.7110 0.6013 0.126*
H1C 1.0473 0.5886 0.5778 0.126*
C2 1.0960 (2) 0.6094 (2) 0.65278 (12) 0.0623 (8)
H2 1.1226 0.6746 0.6747 0.075*
C3 1.2002 (2) 0.4541 (3) 0.69423 (11) 0.0606 (8)
H3 1.2794 0.4578 0.7032 0.073*
C4 1.0113 (2) 0.4980 (2) 0.72188 (10) 0.0525 (6)
H4 0.9641 0.5327 0.7490 0.063*
C5 1.1318 (2) 0.4988 (3) 0.73907 (11) 0.0615 (7)
H5 1.1545 0.5797 0.7481 0.074*
C6 1.1663 (2) 0.3251 (2) 0.68424 (10) 0.0565 (7)
H6 1.2134 0.2913 0.6569 0.068*
C7 0.9784 (2) 0.3686 (2) 0.71229 (10) 0.0475 (6)
H7 0.8989 0.3641 0.7041 0.057*
C8 1.0450 (2) 0.3186 (2) 0.66778 (10) 0.0477 (6)
H8 1.0333 0.3668 0.6365 0.057*
C9 1.1140 (3) 0.3057 (3) 0.77096 (12) 0.0663 (8)
H9 1.1255 0.2570 0.8021 0.080*
C10 1.0905 (3) 0.2103 (4) 0.55151 (14) 0.1063 (13)
H10A 1.0859 0.2952 0.5534 0.160*
H10B 1.0710 0.1847 0.5171 0.160*
H10C 1.1651 0.1856 0.5593 0.160*
C11 1.0206 (3) −0.0159 (3) 0.60583 (12) 0.0748 (9)
H11A 1.0988 −0.0286 0.6111 0.112*
H11B 0.9973 −0.0561 0.5748 0.112*
H11C 0.9800 −0.0465 0.6351 0.112*
C12 0.8465 (3) 0.1719 (3) 0.57919 (11) 0.0673 (8)
C13 0.8201 (3) 0.1084 (3) 0.52793 (12) 0.0919 (11)
H13A 0.7429 0.1190 0.5196 0.138*
H13B 0.8359 0.0254 0.5315 0.138*
H13C 0.8651 0.1411 0.5006 0.138*
C14 0.7693 (3) 0.1210 (4) 0.62207 (15) 0.1046 (12)
H14A 0.7834 0.1612 0.6543 0.157*
H14B 0.7837 0.0378 0.6262 0.157*
H14C 0.6930 0.1324 0.6122 0.157*
C15 0.8231 (4) 0.3032 (3) 0.57262 (19) 0.141 (2)
H15A 0.7474 0.3141 0.5618 0.212*
H15B 0.8722 0.3354 0.5468 0.212*
H15C 0.8351 0.3431 0.6052 0.212*
O1 0.99714 (14) 0.56100 (14) 0.67385 (7) 0.0554 (5)
O2 1.18006 (14) 0.52151 (17) 0.64779 (7) 0.0621 (5)
O3 1.14699 (17) 0.42203 (18) 0.78300 (7) 0.0728 (6)
O4 1.00096 (16) 0.30181 (15) 0.75876 (7) 0.0584 (5)
O5 1.18069 (15) 0.25908 (18) 0.73137 (8) 0.0689 (6)
O6 1.01461 (16) 0.19916 (15) 0.65769 (7) 0.0610 (5)
Si1 0.99324 (6) 0.14381 (6) 0.59918 (3) 0.0530 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.081 (2) 0.074 (2) 0.096 (3) 0.0003 (17) 0.0099 (19) 0.032 (2)
C2 0.0583 (17) 0.0506 (16) 0.078 (2) −0.0097 (14) 0.0084 (15) 0.0002 (15)
C3 0.0401 (15) 0.077 (2) 0.0650 (18) −0.0088 (14) −0.0059 (13) 0.0029 (16)
C4 0.0549 (16) 0.0477 (14) 0.0550 (17) −0.0024 (12) 0.0088 (13) −0.0084 (13)
C5 0.0650 (18) 0.0632 (18) 0.0563 (18) −0.0168 (15) −0.0026 (14) −0.0060 (15)
C6 0.0492 (15) 0.0673 (18) 0.0531 (17) 0.0093 (14) 0.0019 (13) −0.0007 (14)
C7 0.0458 (15) 0.0451 (14) 0.0515 (16) −0.0045 (11) −0.0005 (12) −0.0021 (12)
C8 0.0507 (15) 0.0432 (14) 0.0491 (16) −0.0002 (11) −0.0029 (12) −0.0048 (12)
C9 0.072 (2) 0.070 (2) 0.0565 (18) −0.0023 (16) −0.0084 (16) 0.0069 (16)
C10 0.121 (3) 0.112 (3) 0.086 (3) −0.040 (2) 0.038 (2) −0.020 (2)
C11 0.093 (2) 0.0545 (17) 0.077 (2) 0.0151 (16) −0.0045 (17) −0.0142 (15)
C12 0.0784 (19) 0.0668 (17) 0.0567 (17) 0.0118 (15) −0.0106 (15) −0.0052 (14)
C13 0.104 (2) 0.096 (2) 0.076 (2) 0.0068 (19) −0.0219 (18) −0.0122 (18)
C14 0.072 (2) 0.142 (3) 0.100 (2) 0.008 (2) 0.0024 (19) −0.005 (2)
C15 0.178 (5) 0.084 (3) 0.162 (4) 0.060 (3) −0.091 (4) −0.026 (3)
O1 0.0522 (10) 0.0465 (10) 0.0677 (12) −0.0015 (8) 0.0059 (9) 0.0021 (9)
O2 0.0495 (11) 0.0730 (12) 0.0639 (12) −0.0066 (9) 0.0089 (9) 0.0042 (11)
O3 0.0812 (14) 0.0844 (15) 0.0527 (12) −0.0182 (11) −0.0141 (10) −0.0024 (11)
O4 0.0626 (12) 0.0582 (11) 0.0544 (12) −0.0061 (9) 0.0037 (9) 0.0049 (9)
O5 0.0637 (12) 0.0759 (13) 0.0671 (14) 0.0167 (10) −0.0079 (10) 0.0074 (11)
O6 0.0870 (14) 0.0419 (10) 0.0543 (11) −0.0050 (9) −0.0042 (10) −0.0059 (8)
Si1 0.0636 (5) 0.0452 (4) 0.0502 (5) −0.0004 (4) 0.0056 (4) −0.0067 (3)

Geometric parameters (Å, °)

C1—C2 1.493 (4) C9—O5 1.397 (3)
C1—H1A 0.9600 C9—O3 1.406 (3)
C1—H1B 0.9600 C9—H9 0.9800
C1—H1C 0.9600 C10—Si1 1.852 (3)
C2—O1 1.415 (3) C10—H10A 0.9600
C2—O2 1.421 (3) C10—H10B 0.9600
C2—H2 0.9800 C10—H10C 0.9600
C3—O2 1.436 (3) C11—Si1 1.840 (3)
C3—C5 1.502 (4) C11—H11A 0.9600
C3—C6 1.533 (4) C11—H11B 0.9600
C3—H3 0.9800 C11—H11C 0.9600
C4—O1 1.434 (3) C12—C15 1.516 (4)
C4—C5 1.513 (4) C12—C13 1.532 (4)
C4—C7 1.533 (3) C12—C14 1.550 (5)
C4—H4 0.9800 C12—Si1 1.864 (3)
C5—O3 1.434 (3) C13—H13A 0.9600
C5—H5 0.9800 C13—H13B 0.9600
C6—O5 1.432 (3) C13—H13C 0.9600
C6—C8 1.520 (3) C14—H14A 0.9600
C6—H6 0.9800 C14—H14B 0.9600
C7—O4 1.437 (3) C14—H14C 0.9600
C7—C8 1.505 (3) C15—H15A 0.9600
C7—H7 0.9800 C15—H15B 0.9600
C8—O6 1.420 (3) C15—H15C 0.9600
C8—H8 0.9800 O6—Si1 1.6480 (18)
C9—O4 1.395 (3)
C2—C1—H1A 109.5 O4—C9—H9 107.7
C2—C1—H1B 109.5 O5—C9—H9 107.7
H1A—C1—H1B 109.5 O3—C9—H9 107.7
C2—C1—H1C 109.5 Si1—C10—H10A 109.5
H1A—C1—H1C 109.5 Si1—C10—H10B 109.5
H1B—C1—H1C 109.5 H10A—C10—H10B 109.5
O1—C2—O2 111.3 (2) Si1—C10—H10C 109.5
O1—C2—C1 107.8 (2) H10A—C10—H10C 109.5
O2—C2—C1 107.4 (2) H10B—C10—H10C 109.5
O1—C2—H2 110.1 Si1—C11—H11A 109.5
O2—C2—H2 110.1 Si1—C11—H11B 109.5
C1—C2—H2 110.1 H11A—C11—H11B 109.5
O2—C3—C5 111.6 (2) Si1—C11—H11C 109.5
O2—C3—C6 108.6 (2) H11A—C11—H11C 109.5
C5—C3—C6 107.5 (2) H11B—C11—H11C 109.5
O2—C3—H3 109.7 C15—C12—C13 108.8 (3)
C5—C3—H3 109.7 C15—C12—C14 109.3 (3)
C6—C3—H3 109.7 C13—C12—C14 108.3 (3)
O1—C4—C5 111.2 (2) C15—C12—Si1 111.8 (3)
O1—C4—C7 107.6 (2) C13—C12—Si1 110.7 (2)
C5—C4—C7 107.4 (2) C14—C12—Si1 107.9 (2)
O1—C4—H4 110.2 C12—C13—H13A 109.5
C5—C4—H4 110.2 C12—C13—H13B 109.5
C7—C4—H4 110.2 H13A—C13—H13B 109.5
O3—C5—C3 109.3 (2) C12—C13—H13C 109.5
O3—C5—C4 110.4 (2) H13A—C13—H13C 109.5
C3—C5—C4 107.3 (2) H13B—C13—H13C 109.5
O3—C5—H5 109.9 C12—C14—H14A 109.5
C3—C5—H5 109.9 C12—C14—H14B 109.5
C4—C5—H5 109.9 H14A—C14—H14B 109.5
O5—C6—C8 109.0 (2) C12—C14—H14C 109.5
O5—C6—C3 108.7 (2) H14A—C14—H14C 109.5
C8—C6—C3 110.3 (2) H14B—C14—H14C 109.5
O5—C6—H6 109.6 C12—C15—H15A 109.5
C8—C6—H6 109.6 C12—C15—H15B 109.5
C3—C6—H6 109.6 H15A—C15—H15B 109.5
O4—C7—C8 109.6 (2) C12—C15—H15C 109.5
O4—C7—C4 108.5 (2) H15A—C15—H15C 109.5
C8—C7—C4 109.9 (2) H15B—C15—H15C 109.5
O4—C7—H7 109.6 C2—O1—C4 114.9 (2)
C8—C7—H7 109.6 C2—O2—C3 114.5 (2)
C4—C7—H7 109.6 C9—O3—C5 110.8 (2)
O6—C8—C7 110.9 (2) C9—O4—C7 110.8 (2)
O6—C8—C6 110.0 (2) C9—O5—C6 110.5 (2)
C7—C8—C6 106.3 (2) C8—O6—Si1 124.48 (16)
O6—C8—H8 109.8 O6—Si1—C11 104.99 (12)
C7—C8—H8 109.8 O6—Si1—C10 110.57 (14)
C6—C8—H8 109.8 C11—Si1—C10 110.20 (17)
O4—C9—O5 112.5 (2) O6—Si1—C12 109.54 (12)
O4—C9—O3 110.7 (2) C11—Si1—C12 111.17 (15)
O5—C9—O3 110.5 (2) C10—Si1—C12 110.25 (17)
O2—C3—C5—O3 174.7 (2) C1—C2—O2—C3 −169.0 (2)
C6—C3—C5—O3 55.7 (3) C5—C3—O2—C2 −4.0 (3)
O2—C3—C5—C4 54.9 (3) C6—C3—O2—C2 114.4 (2)
C6—C3—C5—C4 −64.1 (3) O4—C9—O3—C5 −62.2 (3)
O1—C4—C5—O3 −172.03 (19) O5—C9—O3—C5 63.1 (3)
C7—C4—C5—O3 −54.5 (3) C3—C5—O3—C9 −59.7 (3)
O1—C4—C5—C3 −52.9 (3) C4—C5—O3—C9 58.1 (3)
C7—C4—C5—C3 64.6 (3) O5—C9—O4—C7 −59.7 (3)
O2—C3—C6—O5 −176.93 (19) O3—C9—O4—C7 64.4 (3)
C5—C3—C6—O5 −56.1 (3) C8—C7—O4—C9 59.0 (3)
O2—C3—C6—C8 −57.5 (3) C4—C7—O4—C9 −61.0 (3)
C5—C3—C6—C8 63.4 (3) O4—C9—O5—C6 60.5 (3)
O1—C4—C7—O4 175.20 (18) O3—C9—O5—C6 −63.7 (3)
C5—C4—C7—O4 55.3 (3) C8—C6—O5—C9 −59.9 (3)
O1—C4—C7—C8 55.4 (3) C3—C6—O5—C9 60.3 (3)
C5—C4—C7—C8 −64.5 (3) C7—C8—O6—Si1 135.56 (19)
O4—C7—C8—O6 61.8 (3) C6—C8—O6—Si1 −107.1 (2)
C4—C7—C8—O6 −179.1 (2) C8—O6—Si1—C11 154.8 (2)
O4—C7—C8—C6 −57.9 (3) C8—O6—Si1—C10 35.9 (2)
C4—C7—C8—C6 61.2 (3) C8—O6—Si1—C12 −85.8 (2)
O5—C6—C8—O6 −61.8 (3) C15—C12—Si1—O6 65.4 (3)
C3—C6—C8—O6 179.0 (2) C13—C12—Si1—O6 −173.1 (2)
O5—C6—C8—C7 58.4 (3) C14—C12—Si1—O6 −54.8 (2)
C3—C6—C8—C7 −60.8 (3) C15—C12—Si1—C11 −179.0 (3)
O2—C2—O1—C4 53.3 (3) C13—C12—Si1—C11 −57.5 (3)
C1—C2—O1—C4 170.8 (2) C14—C12—Si1—C11 60.8 (3)
C5—C4—O1—C2 0.2 (3) C15—C12—Si1—C10 −56.5 (3)
C7—C4—O1—C2 −117.2 (2) C13—C12—Si1—C10 65.0 (3)
O1—C2—O2—C3 −51.2 (3) C14—C12—Si1—C10 −176.7 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2294).

References

  1. Angyal, S. J. (2000). Carbohydr. Res.325, 313–320. [DOI] [PubMed]
  2. Bruker (2007). APEX2, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Das, T. & Shashidhar, M. S. (1997). Carbohydr. Res.297, 243–249.
  4. Li, C. & Vasella, A. (1993). Helv. Chim. Acta, 76, 211–221.
  5. Potter, B. V. L. & Lampe, D. (1995). Angew. Chem. Int. Ed. Engl.34, 1933–1972.
  6. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sureshan, K. M., Shashidhar, M. S., Praveen, T. & Das, T. (2003). Chem. Rev.103, 4477–4503. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023214/pv2294sup1.cif

e-66-o1741-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023214/pv2294Isup2.hkl

e-66-o1741-Isup2.hkl (199.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES