Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 26;66(Pt 7):o1802. doi: 10.1107/S1600536810020441

4,5-Diaza-9H-fluoren-9-imine

Hui Cang a, Jin-Xiu Ji b, Si-Qing Wang c, Jin-Tang Wang c,*
PMCID: PMC3006907  PMID: 21588011

Abstract

In the title compound, C11H7N3, the diaza­fluorene rings are almost coplanar with an r.m.s. deviation of 0.0160 Å. In the crystal structure, C—H⋯N hydrogen bonds link mol­ecules into sheets parallel to the ab plane. Mol­ecules are also stacked regularly along the c axis by a variety of π–π inter­actions with centroid–centroid distances in the range 3.527 (2)–3.908 (2) Å.

Related literature

For the use of the title compound in synthesizing complexes with inter­esting photochemical properties and for the synthesis, see: Wang & Rillema (1997). For reference bond-length data, see: Allen et al. (1987).graphic file with name e-66-o1802-scheme1.jpg

Experimental

Crystal data

  • C11H7N3

  • M r = 181.20

  • Monoclinic, Inline graphic

  • a = 10.008 (2) Å

  • b = 12.407 (3) Å

  • c = 6.8140 (14) Å

  • β = 99.74 (3)°

  • V = 833.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.973, T max = 0.991

  • 1638 measured reflections

  • 1503 independent reflections

  • 1010 reflections with I > 2σ(I)

  • R int = 0.022

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.194

  • S = 1.06

  • 1503 reflections

  • 127 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020441/sj5007sup1.cif

e-66-o1802-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020441/sj5007Isup2.hkl

e-66-o1802-Isup2.hkl (74.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯N3i 0.93 2.45 3.382 (4) 178
C4—H4A⋯N1ii 0.93 2.69 3.536 (4) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

4,5-diazafluorene-9-imine is one of the important ligands, being utilized to synthesize complexes with interesting photochemical properties (Wang & Rillema, 1997). Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1, and the selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The diazafluorene rings are almost coplanar with an rms deviation 0.0160 Å.

In the crystal structure C—H···N hydrogen bonds link molecules into sheets parallel to the ab plane, Table 1. An extensive system of π–π contacts stacks molecules in an obverse fashion down the c axis, Fig. 2, with Cg1···Cg1 = 3.876 (2) /%A, Cg2···Cg2 = 3.572 (2) /%A, Cg(3)···Cg3 = 3.908 (2) and Cg1···Cg2 3.776 (2) Å and 3.863 (2) Å. Symmetry operations x, 1/2-y, 1/2+z, and x, 1/2-y, -1/2+z; Cg1, Cg2 and Cg3 are the centroids of the C2,C3,C5,C7,C8; N2,C1,C2,C3,C4,C5 and N3,C6,C7,C10,C11 rings, respectively.

Experimental

The title compound was synthesized by a method reported in literature (Wang & Rillema, 1997). Crystals were obtained by dissolving the compound (2.0 g, 11.0 mmol) in ethyl acetate(50 ml), and evaporating the solvent slowly at room temperature for about 5 d.

Refinement

H atoms were positioned geometrically, with N—H = 0.75 and C—H = 0.93Å for aromatic C–H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/N), where x = 1.2 for aromatic H and x = 1.5 for the N–H.

Figures

Fig. 1.

Fig. 1.

A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I). Hydrogen bonds are drawn as dashed lines.

Crystal data

C11H7N3 F(000) = 376
Mr = 181.20 Dx = 1.443 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 10.008 (2) Å θ = 10–13°
b = 12.407 (3) Å µ = 0.09 mm1
c = 6.8140 (14) Å T = 293 K
β = 99.74 (3)° Block, colourless
V = 833.9 (3) Å3 0.30 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1010 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
graphite θmax = 25.3°, θmin = 2.1°
ω/2θ scans h = −11→11
Absorption correction: ψ scan (North et al., 1968) k = 0→14
Tmin = 0.973, Tmax = 0.991 l = 0→8
1638 measured reflections 3 standard reflections every 200 reflections
1503 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0948P)2 + 0.5792P] where P = (Fo2 + 2Fc2)/3
1503 reflections (Δ/σ)max < 0.001
127 parameters Δρmax = 0.28 e Å3
40 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.8062 (3) 0.5097 (2) 0.3404 (5) 0.0530 (8)
H1 0.7491 0.5497 0.3246 0.079*
N2 0.7922 (3) 0.1271 (2) 0.3022 (4) 0.0488 (8)
N3 0.5012 (3) 0.2137 (2) 0.2363 (4) 0.0455 (7)
C1 0.9253 (4) 0.1124 (3) 0.3376 (5) 0.0540 (10)
H1A 0.9567 0.0418 0.3391 0.065*
C2 0.7547 (3) 0.2304 (2) 0.3049 (5) 0.0410 (8)
C3 0.8433 (3) 0.3171 (2) 0.3340 (4) 0.0389 (8)
C4 0.9804 (4) 0.2998 (3) 0.3749 (5) 0.0508 (9)
H4A 1.0425 0.3559 0.4027 0.061*
C5 1.0202 (4) 0.1925 (3) 0.3720 (6) 0.0545 (10)
H5A 1.1119 0.1751 0.3935 0.065*
C6 0.6122 (3) 0.2709 (2) 0.2711 (4) 0.0360 (7)
C7 0.6173 (3) 0.3850 (2) 0.2811 (5) 0.0422 (8)
C8 0.7604 (3) 0.4188 (2) 0.3239 (5) 0.0441 (8)
C9 0.3856 (3) 0.2703 (3) 0.2096 (5) 0.0496 (9)
H9A 0.3044 0.2324 0.1837 0.060*
C10 0.3791 (3) 0.3820 (3) 0.2181 (6) 0.0546 (10)
H10A 0.2955 0.4167 0.2002 0.066*
C11 0.4973 (3) 0.4412 (3) 0.2531 (5) 0.0505 (9)
H11A 0.4959 0.5161 0.2576 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0453 (17) 0.0273 (15) 0.083 (2) −0.0112 (13) 0.0014 (15) 0.0041 (14)
N2 0.0498 (18) 0.0401 (16) 0.0546 (17) 0.0120 (14) 0.0033 (13) 0.0013 (13)
N3 0.0466 (17) 0.0278 (14) 0.0614 (17) −0.0041 (12) 0.0071 (13) −0.0015 (12)
C1 0.058 (2) 0.041 (2) 0.063 (2) 0.0158 (18) 0.0088 (17) 0.0032 (17)
C2 0.0445 (18) 0.0317 (17) 0.0454 (18) 0.0036 (14) 0.0032 (14) −0.0001 (14)
C3 0.0430 (18) 0.0370 (17) 0.0380 (15) −0.0060 (14) 0.0105 (13) 0.0004 (13)
C4 0.045 (2) 0.046 (2) 0.059 (2) −0.0079 (16) 0.0011 (16) 0.0065 (16)
C5 0.0399 (19) 0.065 (3) 0.058 (2) 0.0084 (18) 0.0070 (15) 0.0018 (18)
C6 0.0387 (16) 0.0285 (16) 0.0390 (16) −0.0005 (13) 0.0011 (12) −0.0013 (12)
C7 0.0478 (19) 0.0246 (16) 0.0516 (18) −0.0031 (14) 0.0013 (14) 0.0001 (13)
C8 0.0497 (19) 0.0282 (16) 0.0536 (19) −0.0097 (15) 0.0062 (15) −0.0024 (14)
C9 0.0339 (18) 0.045 (2) 0.068 (2) −0.0037 (15) 0.0030 (15) −0.0008 (17)
C10 0.045 (2) 0.040 (2) 0.079 (3) 0.0097 (17) 0.0094 (17) −0.0004 (18)
C11 0.056 (2) 0.0250 (17) 0.069 (2) 0.0054 (16) 0.0049 (17) 0.0010 (16)

Geometric parameters (Å, °)

N1—C8 1.216 (4) C4—C5 1.391 (5)
N1—H1 0.7500 C4—H4A 0.9300
N2—C1 1.325 (4) C5—H5A 0.9300
N2—C2 1.336 (4) C6—C7 1.417 (4)
N3—C6 1.305 (4) C7—C11 1.373 (4)
N3—C9 1.340 (4) C7—C8 1.473 (4)
C1—C5 1.367 (5) C9—C10 1.389 (5)
C1—H1A 0.9300 C9—H9A 0.9300
C2—C3 1.386 (4) C10—C11 1.379 (5)
C2—C6 1.493 (4) C10—H10A 0.9300
C3—C4 1.371 (5) C11—H11A 0.9300
C3—C8 1.505 (4)
C8—N1—H1 109.5 N3—C6—C7 125.1 (3)
C1—N2—C2 113.9 (3) N3—C6—C2 127.3 (3)
C6—N3—C9 115.4 (3) C7—C6—C2 107.6 (3)
N2—C1—C5 125.4 (3) C11—C7—C6 118.5 (3)
N2—C1—H1A 117.3 C11—C7—C8 132.9 (3)
C5—C1—H1A 117.3 C6—C7—C8 108.6 (3)
N2—C2—C3 124.9 (3) N1—C8—C7 128.4 (3)
N2—C2—C6 125.7 (3) N1—C8—C3 125.3 (3)
C3—C2—C6 109.4 (3) C7—C8—C3 106.3 (2)
C4—C3—C2 120.1 (3) N3—C9—C10 124.3 (3)
C4—C3—C8 131.7 (3) N3—C9—H9A 117.9
C2—C3—C8 108.0 (3) C10—C9—H9A 117.9
C3—C4—C5 115.2 (3) C11—C10—C9 119.5 (3)
C3—C4—H4A 122.4 C11—C10—H10A 120.2
C5—C4—H4A 122.4 C9—C10—H10A 120.2
C1—C5—C4 120.4 (3) C7—C11—C10 117.3 (3)
C1—C5—H5A 119.8 C7—C11—H11A 121.3
C4—C5—H5A 119.8 C10—C11—H11A 121.3
C2—N2—C1—C5 −0.8 (5) N3—C6—C7—C11 0.2 (5)
C1—N2—C2—C3 2.3 (5) C2—C6—C7—C11 179.6 (3)
C1—N2—C2—C6 −179.7 (3) N3—C6—C7—C8 179.7 (3)
N2—C2—C3—C4 −4.0 (5) C2—C6—C7—C8 −0.9 (4)
C6—C2—C3—C4 177.8 (3) C11—C7—C8—N1 −1.9 (6)
N2—C2—C3—C8 179.3 (3) C6—C7—C8—N1 178.7 (4)
C6—C2—C3—C8 1.1 (3) C11—C7—C8—C3 −179.1 (3)
C2—C3—C4—C5 3.7 (5) C6—C7—C8—C3 1.5 (4)
C8—C3—C4—C5 179.5 (3) C4—C3—C8—N1 5.0 (6)
N2—C1—C5—C4 1.0 (6) C2—C3—C8—N1 −178.9 (3)
C3—C4—C5—C1 −2.4 (5) C4—C3—C8—C7 −177.8 (3)
C9—N3—C6—C7 −0.2 (5) C2—C3—C8—C7 −1.6 (3)
C9—N3—C6—C2 −179.5 (3) C6—N3—C9—C10 −0.4 (5)
N2—C2—C6—N3 1.0 (5) N3—C9—C10—C11 1.0 (6)
C3—C2—C6—N3 179.3 (3) C6—C7—C11—C10 0.4 (5)
N2—C2—C6—C7 −178.4 (3) C8—C7—C11—C10 −179.0 (3)
C3—C2—C6—C7 −0.1 (3) C9—C10—C11—C7 −0.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C11—H11A···N3i 0.93 2.45 3.382 (4) 178
C4—H4A···N1ii 0.93 2.69 3.536 (4) 152

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5007).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377–12390.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020441/sj5007sup1.cif

e-66-o1802-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020441/sj5007Isup2.hkl

e-66-o1802-Isup2.hkl (74.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES