Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 23;66(Pt 7):o1754. doi: 10.1107/S1600536810023524

N,N′-Dicyclo­hexyl-N,N′-dimethyl-N′′-(4-nitro­benzo­yl)phospho­ric triamide

Fahimeh Sabbaghi a,*, Mahnaz Rostami Chaijan b, Mehrdad Pourayoubi b
PMCID: PMC3006933  PMID: 21587970

Abstract

The P atom in the title compound, C21H33N4O4P, is in a slightly distorted tetra­hedral coordination environment and the phosphoryl and carbonyl groups are anti to each other. The environment of each N atom is essentially planar (average angles of 119.9 and 118.4°). In the crystal structure, the H atom of the C(=O)NHP(=O) group is involved in an inter­molecular –P=O⋯H–N– hydrogen bond, forming centrosymmetric dimers.

Related literature

For applications of compounds containing the –C(=O)NHP(=O)– skeleton, see: Gholivand et al. (2010). For related structures, see: Pourayoubi & Sabbaghi (2009); Sabbaghi et al. (2010).graphic file with name e-66-o1754-scheme1.jpg

Experimental

Crystal data

  • C21H33N4O4P

  • M r = 436.48

  • Triclinic, Inline graphic

  • a = 8.6118 (16) Å

  • b = 10.838 (2) Å

  • c = 12.711 (2) Å

  • α = 93.089 (4)°

  • β = 106.792 (4)°

  • γ = 95.105 (3)°

  • V = 1127.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 120 K

  • 0.40 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998) T min = 0.959, T max = 0.969

  • 12417 measured reflections

  • 5955 independent reflections

  • 4603 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.103

  • S = 1.00

  • 5955 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023524/lh5061sup1.cif

e-66-o1754-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023524/lh5061Isup2.hkl

e-66-o1754-Isup2.hkl (291.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 1.91 2.7622 (18) 167

Symmetry code: (i) Inline graphic.

Acknowledgments

Support of this investigation by Islamic Azad University-Zanjan Branch is gratefully acknowledged.

supplementary crystallographic information

Comment

Carbacylamidophosphates with a –C(O)NHP(O)– skeleton have attracted attention because of their roles as the O,O'-donor ligands for metal complexation (Gholivand et al., 2010). In the previous work, the structures of two compounds with a P(O)[NHC(O)C6H4(4-NO2)] moiety have been investigated: P(O)[NHC(O)C6H4(4-NO2)][N(CH(CH3)2)(CH2C6H5)]2 (Pourayoubi & Sabbaghi, 2009) and P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2 (Sabbaghi et al., 2010). Here, we report the synthesis and crystal structure of a third compound, P(O)[NHC(O)C6H4(4-NO2)][N(CH3)(C6H11)]2. The phosphoryl and carbonyl groups are anti to each other and the phosphorus atom has a slightly distorted tetrahedral configuration (Fig 1). The bond angles around the P atom are in the range of 104.81 (7)°-117.28 (8)°. The P1–N3 and P1–N4 bond lengths (1.6315 (15) Å and 1.6446 (15) Å) are shorter than the P1–N1 bond (1.6859 (14) Å). The environment of the nitrogen atoms is essentially planar; the angles C8–N3–P1, C8–N3–C9 and P1–N3–C9 are 124.25 (12)°, 117.46 (14)° and 118.02 (11)°, respectively (with average = 119.9°). A similar result was obtained for the bond angles around N4 atom (average = 118.4°). Furthermore, the angle C1–N1–P1 is 125.20 (12)°. The P═O bond length of 1.4834 (13) Å is standard for phosphoramidate compounds. The hydrogen atom of the C(═O)NHP(═O) group is involved in an intermolecular –P═O···H—N– hydrogen bond (see Table 1) to form a centrosymmetric dimeric aggregate. A view of crystal packing along the a axis is shown in Fig. 2.

Experimental

4-NO2—C6H4C(O)NHP(O)Cl2 was prepared according to the procedure of literature (Sabbaghi et al., 2010). To a solution of (0.566 g, 2 mmol) 4-NO2C6H4C(O)NHP(O)Cl2 in CH3CN (20 ml), a solution of N-methylcyclohexylamine (0.906 g, 8 mmol) in CH3CN (5 ml) was added dropwise at 273K. After 4 h the solvent was removed in vacuum. Single crystals were obtained from a solution of title compound in CH3CN and n-C6H14 (4:1) after slow evaporation at room temperature. IR (KBr, cm-1): 3063, 2930, 2855, 1685, 1523, 1453, 1340, 1267, 1183, 1106, 1004, 848, 712.

Refinement

The hydrogen atom of the NH group was seen in a difference Fourier map and included with N-H = 0.86Å. The other H atoms were placed in calculated positions C-H = 0.95-1.00Å. All hydrogen atoms were refined in a riding-model approximation with Uiso(H) parameters equal to 1.2 Ueq(Ci), or for methyl groups equal to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded.

Figures

Fig. 1.

Fig. 1.

A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (H(C) atoms are omitted for clarity).

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound viewed approximately along the a axis showing centrosymmetric H-bonded (dashed lines) dimers. Only H atoms involved in hydrogen bonds are shown.

Crystal data

C21H33N4O4P Z = 2
Mr = 436.48 F(000) = 468
Triclinic, P1 Dx = 1.286 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.6118 (16) Å Cell parameters from 2045 reflections
b = 10.838 (2) Å θ = 2–25°
c = 12.711 (2) Å µ = 0.16 mm1
α = 93.089 (4)° T = 120 K
β = 106.792 (4)° Prism, colorless
γ = 95.105 (3)° 0.40 × 0.20 × 0.20 mm
V = 1127.4 (4) Å3

Data collection

Bruker SMART 1000 CCD area detector diffractometer 5955 independent reflections
Radiation source: fine-focus sealed tube 4603 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) h = −11→11
Tmin = 0.959, Tmax = 0.969 k = −14→14
12417 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: mixed
wR(F2) = 0.103 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.001P)2 + 1.3P] where P = (Fo2 + 2Fc2)/3
5955 reflections (Δ/σ)max = 0.001
273 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.45851 (5) 0.82031 (4) 0.58020 (3) 0.02026 (10)
O1 0.48700 (15) 0.85007 (11) 0.47427 (9) 0.0235 (3)
O2 0.37428 (15) 0.88786 (11) 0.78908 (10) 0.0269 (3)
O3 0.60736 (19) 1.44437 (13) 1.10559 (11) 0.0390 (3)
O4 0.7761 (2) 1.49349 (14) 1.01319 (12) 0.0453 (4)
N1 0.47053 (17) 0.95776 (12) 0.65239 (11) 0.0199 (3)
H1N 0.4965 1.0218 0.6211 0.024*
N2 0.6661 (2) 1.42572 (14) 1.02941 (12) 0.0305 (3)
N3 0.28286 (18) 0.73684 (13) 0.55664 (11) 0.0240 (3)
N4 0.59191 (18) 0.74205 (13) 0.66231 (12) 0.0247 (3)
C1 0.43680 (19) 0.97284 (15) 0.75065 (13) 0.0200 (3)
C2 0.48973 (19) 1.09818 (15) 0.81576 (13) 0.0197 (3)
C3 0.5913 (2) 1.19046 (16) 0.78890 (14) 0.0246 (3)
H3A 0.6219 1.1794 0.7232 0.030*
C4 0.6481 (2) 1.29926 (16) 0.85839 (14) 0.0263 (4)
H4A 0.7182 1.3626 0.8413 0.032*
C5 0.5999 (2) 1.31276 (15) 0.95283 (13) 0.0232 (3)
C6 0.4977 (2) 1.22431 (16) 0.98073 (14) 0.0244 (3)
H6A 0.4653 1.2369 1.0455 0.029*
C7 0.4429 (2) 1.11573 (16) 0.91131 (13) 0.0229 (3)
H7A 0.3729 1.0528 0.9292 0.027*
C8 0.2412 (2) 0.65393 (18) 0.63379 (15) 0.0335 (4)
H8A 0.1906 0.5735 0.5943 0.050*
H8B 0.1646 0.6909 0.6668 0.050*
H8C 0.3405 0.6418 0.6920 0.050*
C9 0.1508 (2) 0.75515 (15) 0.45520 (13) 0.0217 (3)
H9A 0.1909 0.8281 0.4217 0.026*
C10 −0.0048 (2) 0.78658 (18) 0.47985 (15) 0.0306 (4)
H10A 0.0200 0.8621 0.5318 0.037*
H10B −0.0464 0.7174 0.5156 0.037*
C11 −0.1361 (2) 0.80878 (19) 0.37426 (16) 0.0342 (4)
H11A −0.2379 0.8235 0.3920 0.041*
H11B −0.0995 0.8839 0.3430 0.041*
C12 −0.1699 (2) 0.69742 (19) 0.28905 (17) 0.0382 (5)
H12A −0.2174 0.6243 0.3172 0.046*
H12B −0.2504 0.7160 0.2202 0.046*
C13 −0.0139 (3) 0.6671 (2) 0.26434 (16) 0.0393 (5)
H13A 0.0280 0.7371 0.2296 0.047*
H13B −0.0382 0.5923 0.2116 0.047*
C14 0.1171 (2) 0.64358 (17) 0.37005 (15) 0.0297 (4)
H14A 0.0798 0.5685 0.4010 0.036*
H14B 0.2189 0.6285 0.3525 0.036*
C15 0.6164 (3) 0.62277 (18) 0.61104 (17) 0.0404 (5)
H15A 0.6089 0.5568 0.6597 0.061*
H15B 0.7243 0.6294 0.5993 0.061*
H15C 0.5321 0.6029 0.5400 0.061*
C16 0.7269 (2) 0.79996 (16) 0.75819 (13) 0.0226 (3)
H16A 0.6797 0.8608 0.7989 0.027*
C17 0.7955 (2) 0.70390 (17) 0.83827 (14) 0.0279 (4)
H17A 0.8455 0.6425 0.8016 0.034*
H17B 0.7059 0.6590 0.8601 0.034*
C18 0.9245 (2) 0.76902 (19) 0.94149 (15) 0.0329 (4)
H18A 0.8718 0.8248 0.9816 0.040*
H18B 0.9714 0.7059 0.9913 0.040*
C19 1.0606 (2) 0.8443 (2) 0.91066 (16) 0.0363 (5)
H19A 1.1212 0.7874 0.8780 0.044*
H19B 1.1380 0.8891 0.9780 0.044*
C20 0.9923 (2) 0.9376 (2) 0.82845 (17) 0.0361 (5)
H20A 1.0822 0.9815 0.8063 0.043*
H20B 0.9424 1.0003 0.8640 0.043*
C21 0.8637 (2) 0.87251 (19) 0.72583 (15) 0.0306 (4)
H21A 0.8179 0.9352 0.6752 0.037*
H21B 0.9156 0.8150 0.6866 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0236 (2) 0.0180 (2) 0.01684 (19) 0.00119 (16) 0.00277 (16) 0.00079 (15)
O1 0.0288 (6) 0.0206 (6) 0.0198 (6) 0.0005 (5) 0.0062 (5) −0.0009 (4)
O2 0.0322 (7) 0.0247 (6) 0.0249 (6) 0.0000 (5) 0.0108 (5) 0.0037 (5)
O3 0.0589 (10) 0.0343 (8) 0.0216 (6) 0.0068 (7) 0.0091 (6) −0.0052 (5)
O4 0.0593 (10) 0.0356 (8) 0.0337 (8) −0.0152 (7) 0.0101 (7) −0.0085 (6)
N1 0.0244 (7) 0.0173 (6) 0.0174 (6) 0.0013 (5) 0.0058 (5) 0.0014 (5)
N2 0.0421 (9) 0.0260 (8) 0.0192 (7) 0.0045 (7) 0.0025 (7) −0.0004 (6)
N3 0.0262 (7) 0.0240 (7) 0.0177 (7) −0.0025 (6) 0.0004 (6) 0.0062 (5)
N4 0.0282 (8) 0.0191 (7) 0.0223 (7) 0.0061 (6) −0.0002 (6) −0.0017 (5)
C1 0.0182 (7) 0.0223 (8) 0.0181 (7) 0.0043 (6) 0.0023 (6) 0.0028 (6)
C2 0.0193 (8) 0.0213 (8) 0.0172 (7) 0.0047 (6) 0.0028 (6) 0.0011 (6)
C3 0.0277 (9) 0.0273 (9) 0.0186 (8) −0.0001 (7) 0.0075 (7) 0.0002 (6)
C4 0.0310 (9) 0.0256 (9) 0.0203 (8) −0.0020 (7) 0.0058 (7) 0.0010 (7)
C5 0.0274 (9) 0.0218 (8) 0.0164 (7) 0.0046 (7) 0.0001 (6) −0.0009 (6)
C6 0.0280 (9) 0.0282 (9) 0.0176 (8) 0.0082 (7) 0.0063 (7) 0.0025 (6)
C7 0.0243 (8) 0.0246 (8) 0.0199 (8) 0.0042 (7) 0.0061 (6) 0.0033 (6)
C8 0.0365 (10) 0.0313 (10) 0.0265 (9) −0.0097 (8) 0.0021 (8) 0.0110 (7)
C9 0.0236 (8) 0.0219 (8) 0.0166 (7) 0.0012 (6) 0.0014 (6) 0.0028 (6)
C10 0.0325 (10) 0.0333 (10) 0.0259 (9) 0.0075 (8) 0.0077 (8) 0.0015 (7)
C11 0.0286 (10) 0.0361 (10) 0.0372 (11) 0.0117 (8) 0.0058 (8) 0.0063 (8)
C12 0.0287 (10) 0.0354 (11) 0.0394 (11) 0.0051 (8) −0.0076 (8) 0.0013 (9)
C13 0.0389 (11) 0.0436 (12) 0.0246 (9) 0.0118 (9) −0.0075 (8) −0.0085 (8)
C14 0.0275 (9) 0.0305 (9) 0.0250 (9) 0.0079 (7) −0.0021 (7) −0.0045 (7)
C15 0.0504 (13) 0.0275 (10) 0.0350 (11) 0.0144 (9) −0.0020 (9) −0.0058 (8)
C16 0.0219 (8) 0.0252 (8) 0.0189 (8) 0.0050 (6) 0.0024 (6) 0.0005 (6)
C17 0.0269 (9) 0.0315 (9) 0.0246 (9) 0.0057 (7) 0.0048 (7) 0.0068 (7)
C18 0.0291 (10) 0.0429 (11) 0.0238 (9) 0.0041 (8) 0.0019 (7) 0.0091 (8)
C19 0.0229 (9) 0.0521 (13) 0.0301 (10) 0.0038 (8) 0.0011 (8) 0.0071 (9)
C20 0.0248 (9) 0.0440 (12) 0.0354 (10) −0.0041 (8) 0.0039 (8) 0.0093 (9)
C21 0.0274 (9) 0.0392 (10) 0.0259 (9) 0.0048 (8) 0.0074 (7) 0.0100 (8)

Geometric parameters (Å, °)

P1—O1 1.4834 (13) C10—H10B 0.9900
P1—N3 1.6315 (15) C11—C12 1.526 (3)
P1—N4 1.6446 (15) C11—H11A 0.9900
P1—N1 1.6859 (14) C11—H11B 0.9900
O2—C1 1.220 (2) C12—C13 1.524 (3)
O3—N2 1.231 (2) C12—H12A 0.9900
O4—N2 1.219 (2) C12—H12B 0.9900
N1—C1 1.366 (2) C13—C14 1.534 (2)
N1—H1N 0.8628 C13—H13A 0.9900
N2—C5 1.483 (2) C13—H13B 0.9900
N3—C8 1.462 (2) C14—H14A 0.9900
N3—C9 1.489 (2) C14—H14B 0.9900
N4—C15 1.476 (2) C15—H15A 0.9800
N4—C16 1.483 (2) C15—H15B 0.9800
C1—C2 1.513 (2) C15—H15C 0.9800
C2—C3 1.391 (2) C16—C21 1.525 (2)
C2—C7 1.395 (2) C16—C17 1.531 (2)
C3—C4 1.395 (2) C16—H16A 1.0000
C3—H3A 0.9500 C17—C18 1.540 (3)
C4—C5 1.383 (2) C17—H17A 0.9900
C4—H4A 0.9500 C17—H17B 0.9900
C5—C6 1.374 (2) C18—C19 1.524 (3)
C6—C7 1.391 (2) C18—H18A 0.9900
C6—H6A 0.9500 C18—H18B 0.9900
C7—H7A 0.9500 C19—C20 1.525 (3)
C8—H8A 0.9800 C19—H19A 0.9900
C8—H8B 0.9800 C19—H19B 0.9900
C8—H8C 0.9800 C20—C21 1.534 (3)
C9—C10 1.523 (2) C20—H20A 0.9900
C9—C14 1.527 (2) C20—H20B 0.9900
C9—H9A 1.0000 C21—H21A 0.9900
C10—C11 1.531 (3) C21—H21B 0.9900
C10—H10A 0.9900
O1—P1—N3 109.91 (7) H11A—C11—H11B 108.0
O1—P1—N4 117.28 (8) C13—C12—C11 111.06 (16)
N3—P1—N4 105.39 (8) C13—C12—H12A 109.4
O1—P1—N1 106.20 (7) C11—C12—H12A 109.4
N3—P1—N1 113.38 (8) C13—C12—H12B 109.4
N4—P1—N1 104.81 (7) C11—C12—H12B 109.4
C1—N1—P1 125.20 (12) H12A—C12—H12B 108.0
C1—N1—H1N 120.1 C12—C13—C14 111.07 (17)
P1—N1—H1N 114.6 C12—C13—H13A 109.4
O4—N2—O3 124.33 (16) C14—C13—H13A 109.4
O4—N2—C5 117.72 (15) C12—C13—H13B 109.4
O3—N2—C5 117.95 (16) C14—C13—H13B 109.4
C8—N3—C9 117.46 (14) H13A—C13—H13B 108.0
C8—N3—P1 124.25 (12) C9—C14—C13 110.50 (15)
C9—N3—P1 118.02 (11) C9—C14—H14A 109.5
C15—N4—C16 116.81 (14) C13—C14—H14A 109.5
C15—N4—P1 114.39 (12) C9—C14—H14B 109.5
C16—N4—P1 124.01 (11) C13—C14—H14B 109.5
O2—C1—N1 122.38 (15) H14A—C14—H14B 108.1
O2—C1—C2 119.89 (15) N4—C15—H15A 109.5
N1—C1—C2 117.61 (14) N4—C15—H15B 109.5
C3—C2—C7 119.80 (15) H15A—C15—H15B 109.5
C3—C2—C1 122.95 (15) N4—C15—H15C 109.5
C7—C2—C1 117.06 (15) H15A—C15—H15C 109.5
C2—C3—C4 119.99 (16) H15B—C15—H15C 109.5
C2—C3—H3A 120.0 N4—C16—C21 113.46 (14)
C4—C3—H3A 120.0 N4—C16—C17 111.50 (14)
C5—C4—C3 118.47 (16) C21—C16—C17 110.48 (14)
C5—C4—H4A 120.8 N4—C16—H16A 107.0
C3—C4—H4A 120.8 C21—C16—H16A 107.0
C6—C5—C4 122.96 (16) C17—C16—H16A 107.0
C6—C5—N2 118.42 (15) C16—C17—C18 110.00 (15)
C4—C5—N2 118.59 (16) C16—C17—H17A 109.7
C5—C6—C7 118.05 (16) C18—C17—H17A 109.7
C5—C6—H6A 121.0 C16—C17—H17B 109.7
C7—C6—H6A 121.0 C18—C17—H17B 109.7
C6—C7—C2 120.72 (16) H17A—C17—H17B 108.2
C6—C7—H7A 119.6 C19—C18—C17 111.18 (16)
C2—C7—H7A 119.6 C19—C18—H18A 109.4
N3—C8—H8A 109.5 C17—C18—H18A 109.4
N3—C8—H8B 109.5 C19—C18—H18B 109.4
H8A—C8—H8B 109.5 C17—C18—H18B 109.4
N3—C8—H8C 109.5 H18A—C18—H18B 108.0
H8A—C8—H8C 109.5 C18—C19—C20 111.10 (16)
H8B—C8—H8C 109.5 C18—C19—H19A 109.4
N3—C9—C10 112.56 (14) C20—C19—H19A 109.4
N3—C9—C14 111.46 (14) C18—C19—H19B 109.4
C10—C9—C14 111.44 (15) C20—C19—H19B 109.4
N3—C9—H9A 107.0 H19A—C19—H19B 108.0
C10—C9—H9A 107.0 C19—C20—C21 111.01 (17)
C14—C9—H9A 107.0 C19—C20—H20A 109.4
C9—C10—C11 111.17 (15) C21—C20—H20A 109.4
C9—C10—H10A 109.4 C19—C20—H20B 109.4
C11—C10—H10A 109.4 C21—C20—H20B 109.4
C9—C10—H10B 109.4 H20A—C20—H20B 108.0
C11—C10—H10B 109.4 C16—C21—C20 110.50 (15)
H10A—C10—H10B 108.0 C16—C21—H21A 109.5
C12—C11—C10 111.01 (16) C20—C21—H21A 109.5
C12—C11—H11A 109.4 C16—C21—H21B 109.5
C10—C11—H11A 109.4 C20—C21—H21B 109.5
C12—C11—H11B 109.4 H21A—C21—H21B 108.1
C10—C11—H11B 109.4
O1—P1—N1—C1 173.62 (13) C4—C5—C6—C7 1.1 (3)
N3—P1—N1—C1 52.83 (15) N2—C5—C6—C7 −176.72 (15)
N4—P1—N1—C1 −61.59 (15) C5—C6—C7—C2 −0.6 (2)
O1—P1—N3—C8 156.29 (15) C3—C2—C7—C6 −0.5 (2)
N4—P1—N3—C8 29.03 (17) C1—C2—C7—C6 174.68 (15)
N1—P1—N3—C8 −85.04 (17) C8—N3—C9—C10 49.4 (2)
O1—P1—N3—C9 −29.95 (15) P1—N3—C9—C10 −124.79 (14)
N4—P1—N3—C9 −157.20 (12) C8—N3—C9—C14 −76.7 (2)
N1—P1—N3—C9 88.73 (13) P1—N3—C9—C14 109.15 (15)
O1—P1—N4—C15 −55.86 (16) N3—C9—C10—C11 178.22 (15)
N3—P1—N4—C15 66.78 (16) C14—C9—C10—C11 −55.7 (2)
N1—P1—N4—C15 −173.32 (14) C9—C10—C11—C12 55.4 (2)
O1—P1—N4—C16 98.72 (15) C10—C11—C12—C13 −55.9 (2)
N3—P1—N4—C16 −138.64 (14) C11—C12—C13—C14 56.5 (2)
N1—P1—N4—C16 −18.74 (16) N3—C9—C14—C13 −177.44 (16)
P1—N1—C1—O2 −9.5 (2) C10—C9—C14—C13 55.9 (2)
P1—N1—C1—C2 166.63 (11) C12—C13—C14—C9 −56.2 (2)
O2—C1—C2—C3 166.11 (16) C15—N4—C16—C21 81.6 (2)
N1—C1—C2—C3 −10.1 (2) P1—N4—C16—C21 −72.46 (19)
O2—C1—C2—C7 −8.9 (2) C15—N4—C16—C17 −43.9 (2)
N1—C1—C2—C7 174.87 (14) P1—N4—C16—C17 162.03 (13)
C7—C2—C3—C4 1.1 (3) N4—C16—C17—C18 −174.96 (15)
C1—C2—C3—C4 −173.82 (16) C21—C16—C17—C18 57.9 (2)
C2—C3—C4—C5 −0.5 (3) C16—C17—C18—C19 −56.7 (2)
C3—C4—C5—C6 −0.6 (3) C17—C18—C19—C20 55.6 (2)
C3—C4—C5—N2 177.27 (16) C18—C19—C20—C21 −55.6 (2)
O4—N2—C5—C6 168.44 (17) N4—C16—C21—C20 175.75 (15)
O3—N2—C5—C6 −11.0 (2) C17—C16—C21—C20 −58.2 (2)
O4—N2—C5—C4 −9.5 (2) C19—C20—C21—C16 56.9 (2)
O3—N2—C5—C4 171.09 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.86 1.91 2.7622 (18) 167

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5061).

References

  1. Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gholivand, K., Mahzouni, H. R., Pourayoubi, M. & Amiri, S. (2010). Inorg. Chim. Acta, 363, 2318–2324.
  3. Pourayoubi, M. & Sabbaghi, F. (2009). J. Chem. Crystallogr.39, 874–880.
  4. Sabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023524/lh5061sup1.cif

e-66-o1754-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023524/lh5061Isup2.hkl

e-66-o1754-Isup2.hkl (291.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES