Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 16;66(Pt 7):o1656–o1657. doi: 10.1107/S1600536810021586

4-[(E)-(2,4,5-Trimeth­oxy­benzyl­idene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, Abdullah M Asiri b,§, Salman A Khan b
PMCID: PMC3006971  PMID: 21587884

Abstract

The title compound, C21H23N3O4, adopts an E configuration about the central C=N double bond and the pyrazolone ring is almost planar, with a maximum deviation of 0.042 (1) Å. The central pyrazolone ring makes dihedral angles of 51.96 (5) and 3.82 (5)° with the attached phenyl and the trimeth­oxy-substituted benzene rings, respectively. The dihedral angle between the phenyl ring and the trimeth­oxy-substituted benzene ring is 50.19 (5)° and an intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The crystal structure is stabilized by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

For background to the applications of Schiff bases, see: Vukovic et al. (2010); Ramesh & Maheswaran (2003); Dongfang et al. (2008); Sastry & Rao (1988); Kamel et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1656-scheme1.jpg

Experimental

Crystal data

  • C21H23N3O4

  • M r = 381.42

  • Monoclinic, Inline graphic

  • a = 21.0128 (10) Å

  • b = 7.4242 (4) Å

  • c = 12.5194 (6) Å

  • β = 98.675 (1)°

  • V = 1930.72 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.67 × 0.27 × 0.15 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.941, T max = 0.987

  • 23600 measured reflections

  • 5614 independent reflections

  • 4779 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.123

  • S = 1.04

  • 5614 reflections

  • 345 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021586/hb5480sup1.cif

e-66-o1656-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021586/hb5480Isup2.hkl

e-66-o1656-Isup2.hkl (269.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1 0.954 (13) 2.331 (13) 3.0112 (11) 127.8 (10)
C4—H4A⋯O1i 0.969 (13) 2.541 (13) 3.2628 (12) 131.4 (10)
C20—H20A⋯N3ii 0.996 (14) 2.577 (14) 3.5383 (13) 162.1 (12)
C20—H20C⋯O2iii 0.977 (14) 2.509 (14) 3.4470 (13) 160.8 (12)
C20—H20C⋯O3iii 0.977 (14) 2.495 (15) 3.2779 (13) 137.0 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMA and SAK thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia, for providing research facilities.

supplementary crystallographic information

Comment

Compounds with the structure of AC═NB are known as Schiff base, which can be synthesized from the condensation of amino and active carbonyl groups. Schiff base compounds have shown different therapeutic properties such as antibacterial (Vukovic et al., 2010), antifungal (Ramesh & Maheswaran, 2003), antitumor (Dongfang et al., 2008), anti-inflammatory (Sastry & Rao, 1988) and anticancer activities (Kamel et al., 2010). Due to their importance, the crystal structure determination of the title compound was carried out and the results are presented here.

In the title compound (Fig. 1), the pyrazolone ring (N1/N2/C7–C9) is almost planar, with maximum deviation of 0.042 (1) Å for atom N2. The central pyrazolone (N1/N2/C7–C9) ring makes dihedral angles of 51.96 (5)° and 3.82 (5)° with the attached phenyl ring (C1–C6) and the trimethoxy substituted phenyl ring (C11–C16), respectively. The dihedral angle between the phenyl ring(C1–C6) and the trimethoxy substituted phenyl ring (C11–C16) is 50.19 (5)°. The three methoxy groups are coplanar with the benzene ring [torsion angles C19-O2-C13-C12 = 5.04 (16)°, C20-O3-C14-C15 = -0.36 (14)° and C21-O4-C16-C15 = -1.66 (13)°].

In the crystal packing (Fig. 2), the intramolecular C10—H10A···O1 hydrogen bonding generates an S(6) ring motif (Bernstein et al., 1995). The crystal sturcture is futher stabilized by weak intermolecular C4—H4A···O1, C20—H20C···O2, C20—H20C···O3 and C20—H20A···N3 (Table 1) hydrogen bonds.

Experimental

A mixture of 4-aminophenazone (0.50 g, 0.0033 mol) and 2,4,5-tri-methoxy- benzaldehyde (0.65 g, 0.0033 mol) in methanol (15 ml) was refluxed for 5 h with stirring to give a light yellow precipitate. It was then filtered and washed with methanol to give the pure Schiff base and yellow blocks of (I) were recrystallized from methanol. Yield: 48.18%; Mp. 381°C; IR (KBr) νmax cm-1: 2937 (C–H), 1644 (C═C), 1609(C═O), 1591 (C═N), 1122 (N–N). 1H-NMR (CDCl3) d: 10.02 ((s, 1H, CH olefinic), 7.67 (s, H3, CHaromatic), 6.49 (s, H6, CHaromatic), 7.47–7.26 (m, 5H, CHaromatic), 3.93 (s, OCH3), 3.93 (s, OCH3), 3.84 (s, OCH3), 3.11(s, N-CH3), 2.48 (s,-CH3).

Refinement

All the H atoms were located from a difference Fourier map and refined freely [C—H = 0.945 (14)–1.008 (14) Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of (I) showing hydrogen-bonded (dashed lines) networks. H atoms not involved in the hydrogen bond interactions are omitted for clarity.

Crystal data

C21H23N3O4 F(000) = 808
Mr = 381.42 Dx = 1.312 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8559 reflections
a = 21.0128 (10) Å θ = 2.9–34.8°
b = 7.4242 (4) Å µ = 0.09 mm1
c = 12.5194 (6) Å T = 100 K
β = 98.675 (1)° Blcok, yellow
V = 1930.72 (17) Å3 0.67 × 0.27 × 0.15 mm
Z = 4

Data collection

Bruker APEXII DUO CCD diffractometer 5614 independent reflections
Radiation source: fine-focus sealed tube 4779 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 30.0°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −29→29
Tmin = 0.941, Tmax = 0.987 k = −10→10
23600 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0771P)2 + 0.3259P] where P = (Fo2 + 2Fc2)/3
5614 reflections (Δ/σ)max < 0.001
345 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.36912 (3) −0.05337 (10) 0.48796 (5) 0.01654 (15)
O2 0.02634 (3) 0.14809 (11) 0.14482 (6) 0.02325 (17)
O3 0.06645 (3) 0.44390 (11) 0.06868 (6) 0.02140 (17)
O4 0.27842 (3) 0.35928 (10) 0.27787 (6) 0.01722 (15)
N1 0.35715 (4) −0.34299 (11) 0.55298 (6) 0.01452 (16)
N2 0.30506 (4) −0.45837 (11) 0.56225 (6) 0.01459 (16)
N3 0.22306 (4) −0.11616 (11) 0.39236 (6) 0.01426 (16)
C1 0.47358 (5) −0.34082 (14) 0.59345 (8) 0.01773 (19)
C2 0.52970 (5) −0.35703 (15) 0.66770 (9) 0.0216 (2)
C3 0.52678 (5) −0.39395 (14) 0.77564 (8) 0.0205 (2)
C4 0.46740 (5) −0.41126 (14) 0.81062 (8) 0.01797 (19)
C5 0.41087 (5) −0.39230 (14) 0.73777 (7) 0.01641 (18)
C6 0.41448 (4) −0.35847 (13) 0.62948 (7) 0.01427 (18)
C7 0.25240 (4) −0.38702 (13) 0.49748 (7) 0.01383 (18)
C8 0.26770 (4) −0.22283 (13) 0.45728 (7) 0.01270 (17)
C9 0.33566 (4) −0.18791 (13) 0.49592 (7) 0.01293 (17)
C10 0.24207 (4) 0.03035 (13) 0.35116 (7) 0.01384 (17)
C11 0.19674 (4) 0.14168 (13) 0.27961 (7) 0.01385 (18)
C12 0.13242 (4) 0.08699 (14) 0.24831 (7) 0.01533 (18)
C13 0.08971 (4) 0.18970 (14) 0.17891 (8) 0.01645 (18)
C14 0.11121 (4) 0.35193 (14) 0.13731 (7) 0.01642 (19)
C15 0.17427 (4) 0.40938 (14) 0.16780 (7) 0.01589 (18)
C16 0.21674 (4) 0.30561 (13) 0.24024 (7) 0.01424 (17)
C17 0.32012 (5) −0.65126 (14) 0.55935 (8) 0.0194 (2)
C18 0.18985 (5) −0.48412 (14) 0.47905 (8) 0.01728 (19)
C19 0.00170 (5) −0.00727 (18) 0.19178 (11) 0.0293 (3)
C20 0.08640 (5) 0.61077 (16) 0.02644 (9) 0.0223 (2)
C21 0.29988 (5) 0.52608 (14) 0.23842 (8) 0.01750 (19)
H1A 0.4749 (7) −0.319 (2) 0.5178 (11) 0.025 (3)*
H2A 0.5716 (7) −0.342 (2) 0.6413 (11) 0.027 (4)*
H3A 0.5674 (7) −0.413 (2) 0.8265 (12) 0.028 (4)*
H4A 0.4646 (6) −0.4380 (19) 0.8855 (11) 0.020 (3)*
H5A 0.3683 (7) −0.407 (2) 0.7601 (11) 0.024 (3)*
H10A 0.2859 (6) 0.0685 (18) 0.3651 (10) 0.016 (3)*
H12A 0.1206 (7) −0.025 (2) 0.2767 (11) 0.022 (3)*
H15A 0.1878 (7) 0.520 (2) 0.1400 (11) 0.020 (3)*
H17A 0.2798 (7) −0.723 (2) 0.5642 (11) 0.024 (3)*
H17B 0.3365 (7) −0.684 (2) 0.4918 (12) 0.027 (4)*
H17C 0.3507 (7) −0.673 (2) 0.6234 (12) 0.030 (4)*
H18A 0.1555 (7) −0.411 (2) 0.4352 (12) 0.030 (4)*
H18B 0.1925 (8) −0.601 (2) 0.4416 (12) 0.033 (4)*
H18C 0.1744 (7) −0.511 (2) 0.5471 (12) 0.032 (4)*
H19A −0.0437 (8) −0.018 (2) 0.1586 (13) 0.037 (4)*
H19B 0.0243 (8) −0.119 (2) 0.1720 (13) 0.038 (4)*
H19C 0.0082 (8) 0.003 (3) 0.2715 (14) 0.042 (4)*
H20A 0.1208 (7) 0.586 (2) −0.0182 (11) 0.024 (3)*
H20B 0.1018 (7) 0.696 (2) 0.0873 (12) 0.032 (4)*
H20C 0.0475 (7) 0.656 (2) −0.0181 (11) 0.026 (4)*
H21A 0.3011 (7) 0.515 (2) 0.1612 (12) 0.023 (3)*
H21B 0.3418 (7) 0.545 (2) 0.2761 (11) 0.025 (4)*
H21C 0.2732 (7) 0.626 (2) 0.2555 (11) 0.024 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0170 (3) 0.0133 (3) 0.0192 (3) −0.0013 (3) 0.0023 (2) 0.0031 (3)
O2 0.0125 (3) 0.0240 (4) 0.0322 (4) −0.0015 (3) 0.0001 (3) 0.0114 (3)
O3 0.0138 (3) 0.0224 (4) 0.0272 (4) 0.0030 (3) 0.0007 (3) 0.0132 (3)
O4 0.0142 (3) 0.0164 (3) 0.0202 (3) −0.0017 (3) −0.0002 (2) 0.0061 (3)
N1 0.0139 (3) 0.0120 (4) 0.0170 (3) −0.0004 (3) 0.0000 (3) 0.0033 (3)
N2 0.0149 (3) 0.0111 (4) 0.0172 (3) −0.0007 (3) 0.0004 (3) 0.0030 (3)
N3 0.0153 (3) 0.0137 (4) 0.0137 (3) 0.0033 (3) 0.0020 (3) 0.0020 (3)
C1 0.0173 (4) 0.0173 (5) 0.0189 (4) 0.0029 (4) 0.0038 (3) 0.0031 (4)
C2 0.0151 (4) 0.0213 (5) 0.0281 (5) 0.0019 (4) 0.0027 (4) 0.0041 (4)
C3 0.0190 (4) 0.0159 (4) 0.0243 (5) 0.0007 (4) −0.0041 (3) 0.0008 (4)
C4 0.0218 (4) 0.0150 (4) 0.0158 (4) 0.0018 (4) −0.0013 (3) −0.0005 (3)
C5 0.0173 (4) 0.0151 (4) 0.0166 (4) 0.0019 (3) 0.0020 (3) −0.0005 (3)
C6 0.0148 (4) 0.0110 (4) 0.0163 (4) 0.0020 (3) −0.0001 (3) 0.0004 (3)
C7 0.0153 (4) 0.0132 (4) 0.0130 (4) 0.0014 (3) 0.0023 (3) 0.0005 (3)
C8 0.0140 (4) 0.0119 (4) 0.0122 (3) 0.0020 (3) 0.0020 (3) 0.0007 (3)
C9 0.0149 (4) 0.0119 (4) 0.0122 (3) 0.0023 (3) 0.0026 (3) 0.0010 (3)
C10 0.0145 (4) 0.0131 (4) 0.0138 (4) 0.0025 (3) 0.0018 (3) 0.0012 (3)
C11 0.0146 (4) 0.0132 (4) 0.0140 (4) 0.0023 (3) 0.0027 (3) 0.0024 (3)
C12 0.0149 (4) 0.0143 (4) 0.0171 (4) 0.0020 (3) 0.0037 (3) 0.0038 (3)
C13 0.0122 (4) 0.0176 (4) 0.0197 (4) 0.0017 (3) 0.0031 (3) 0.0039 (4)
C14 0.0144 (4) 0.0175 (4) 0.0176 (4) 0.0043 (3) 0.0030 (3) 0.0056 (3)
C15 0.0155 (4) 0.0154 (4) 0.0171 (4) 0.0023 (3) 0.0035 (3) 0.0051 (3)
C16 0.0131 (4) 0.0150 (4) 0.0147 (4) 0.0013 (3) 0.0024 (3) 0.0019 (3)
C17 0.0216 (4) 0.0111 (4) 0.0244 (5) 0.0012 (4) −0.0003 (4) 0.0034 (4)
C18 0.0166 (4) 0.0155 (4) 0.0196 (4) −0.0020 (3) 0.0025 (3) 0.0013 (3)
C19 0.0165 (4) 0.0268 (6) 0.0443 (7) −0.0026 (4) 0.0037 (4) 0.0137 (5)
C20 0.0179 (4) 0.0221 (5) 0.0268 (5) 0.0031 (4) 0.0028 (4) 0.0124 (4)
C21 0.0194 (4) 0.0139 (4) 0.0194 (4) −0.0017 (4) 0.0036 (3) 0.0029 (3)

Geometric parameters (Å, °)

O1—C9 1.2341 (12) C8—C9 1.4603 (12)
O2—C13 1.3709 (11) C10—C11 1.4613 (12)
O2—C19 1.4268 (14) C10—H10A 0.954 (13)
O3—C14 1.3583 (11) C11—C16 1.4011 (13)
O3—C20 1.4342 (13) C11—C12 1.4090 (13)
O4—C16 1.3698 (11) C12—C13 1.3808 (13)
O4—C21 1.4311 (12) C12—H12A 0.949 (15)
N1—C9 1.3937 (12) C13—C14 1.4130 (14)
N1—N2 1.4084 (11) C14—C15 1.3897 (13)
N1—C6 1.4261 (11) C15—C16 1.4029 (12)
N2—C7 1.3754 (11) C15—H15A 0.953 (15)
N2—C17 1.4683 (13) C17—H17A 1.008 (14)
N3—C10 1.2927 (12) C17—H17B 0.990 (14)
N3—C8 1.3918 (11) C17—H17C 0.963 (15)
C1—C6 1.3898 (13) C18—H18A 1.000 (16)
C1—C2 1.3923 (13) C18—H18B 0.990 (17)
C1—H1A 0.965 (14) C18—H18C 0.977 (15)
C2—C3 1.3893 (15) C19—H19A 0.986 (17)
C2—H2A 0.992 (15) C19—H19B 1.006 (17)
C3—C4 1.3892 (15) C19—H19C 0.990 (18)
C3—H3A 0.995 (15) C20—H20A 0.996 (14)
C4—C5 1.3913 (13) C20—H20B 1.007 (16)
C4—H4A 0.969 (13) C20—H20C 0.976 (15)
C5—C6 1.3921 (13) C21—H21A 0.974 (14)
C5—H5A 0.984 (14) C21—H21B 0.945 (14)
C7—C8 1.3753 (13) C21—H21C 0.972 (15)
C7—C18 1.4863 (13)
C13—O2—C19 116.72 (8) C13—C12—H12A 122.3 (8)
C14—O3—C20 117.04 (8) C11—C12—H12A 116.3 (8)
C16—O4—C21 117.65 (7) O2—C13—C12 125.46 (9)
C9—N1—N2 110.43 (7) O2—C13—C14 115.26 (8)
C9—N1—C6 125.90 (8) C12—C13—C14 119.28 (8)
N2—N1—C6 118.94 (7) O3—C14—C15 124.05 (9)
C7—N2—N1 106.45 (7) O3—C14—C13 115.62 (8)
C7—N2—C17 121.21 (8) C15—C14—C13 120.33 (8)
N1—N2—C17 114.72 (8) C14—C15—C16 119.75 (9)
C10—N3—C8 119.36 (8) C14—C15—H15A 119.3 (8)
C6—C1—C2 118.90 (9) C16—C15—H15A 120.9 (8)
C6—C1—H1A 119.6 (8) O4—C16—C11 116.75 (8)
C2—C1—H1A 121.5 (8) O4—C16—C15 122.63 (9)
C3—C2—C1 120.62 (9) C11—C16—C15 120.61 (8)
C3—C2—H2A 121.2 (8) N2—C17—H17A 109.0 (8)
C1—C2—H2A 118.2 (8) N2—C17—H17B 111.4 (9)
C4—C3—C2 119.89 (9) H17A—C17—H17B 108.9 (12)
C4—C3—H3A 120.6 (9) N2—C17—H17C 105.3 (9)
C2—C3—H3A 119.4 (9) H17A—C17—H17C 108.8 (12)
C3—C4—C5 120.18 (9) H17B—C17—H17C 113.3 (12)
C3—C4—H4A 120.8 (8) C7—C18—H18A 111.7 (9)
C5—C4—H4A 119.0 (8) C7—C18—H18B 112.7 (9)
C4—C5—C6 119.34 (9) H18A—C18—H18B 107.7 (13)
C4—C5—H5A 121.7 (8) C7—C18—H18C 111.5 (9)
C6—C5—H5A 118.9 (8) H18A—C18—H18C 106.4 (12)
C1—C6—C5 121.05 (8) H18B—C18—H18C 106.5 (13)
C1—C6—N1 118.69 (8) O2—C19—H19A 106.4 (10)
C5—C6—N1 120.26 (8) O2—C19—H19B 110.6 (9)
C8—C7—N2 110.21 (8) H19A—C19—H19B 106.9 (14)
C8—C7—C18 128.54 (8) O2—C19—H19C 110.6 (11)
N2—C7—C18 121.25 (8) H19A—C19—H19C 114.1 (14)
C7—C8—N3 122.95 (8) H19B—C19—H19C 108.1 (14)
C7—C8—C9 107.87 (8) O3—C20—H20A 109.0 (9)
N3—C8—C9 129.17 (8) O3—C20—H20B 110.2 (9)
O1—C9—N1 124.44 (8) H20A—C20—H20B 111.3 (12)
O1—C9—C8 131.11 (8) O3—C20—H20C 104.0 (9)
N1—C9—C8 104.37 (8) H20A—C20—H20C 111.0 (11)
N3—C10—C11 120.57 (8) H20B—C20—H20C 111.1 (12)
N3—C10—H10A 121.7 (8) O4—C21—H21A 109.1 (9)
C11—C10—H10A 117.8 (8) O4—C21—H21B 105.8 (9)
C16—C11—C12 118.58 (8) H21A—C21—H21B 110.2 (12)
C16—C11—C10 120.31 (8) O4—C21—H21C 111.1 (8)
C12—C11—C10 121.11 (8) H21A—C21—H21C 112.6 (12)
C13—C12—C11 121.40 (9) H21B—C21—H21C 107.8 (12)
C9—N1—N2—C7 8.54 (10) C7—C8—C9—O1 −173.56 (9)
C6—N1—N2—C7 165.59 (8) N3—C8—C9—O1 5.87 (16)
C9—N1—N2—C17 145.49 (8) C7—C8—C9—N1 3.25 (10)
C6—N1—N2—C17 −57.45 (11) N3—C8—C9—N1 −177.33 (9)
C6—C1—C2—C3 1.32 (16) C8—N3—C10—C11 177.82 (8)
C1—C2—C3—C4 −1.34 (17) N3—C10—C11—C16 176.26 (8)
C2—C3—C4—C5 0.21 (16) N3—C10—C11—C12 −4.03 (14)
C3—C4—C5—C6 0.91 (16) C16—C11—C12—C13 1.10 (14)
C2—C1—C6—C5 −0.17 (15) C10—C11—C12—C13 −178.61 (9)
C2—C1—C6—N1 −179.57 (9) C19—O2—C13—C12 5.04 (16)
C4—C5—C6—C1 −0.93 (15) C19—O2—C13—C14 −175.23 (10)
C4—C5—C6—N1 178.45 (9) C11—C12—C13—O2 −179.44 (9)
C9—N1—C6—C1 −65.96 (13) C11—C12—C13—C14 0.83 (15)
N2—N1—C6—C1 140.85 (9) C20—O3—C14—C15 −0.36 (14)
C9—N1—C6—C5 114.64 (11) C20—O3—C14—C13 178.96 (9)
N2—N1—C6—C5 −38.55 (13) O2—C13—C14—O3 −0.49 (13)
N1—N2—C7—C8 −6.30 (10) C12—C13—C14—O3 179.26 (9)
C17—N2—C7—C8 −139.83 (9) O2—C13—C14—C15 178.86 (9)
N1—N2—C7—C18 173.92 (8) C12—C13—C14—C15 −1.40 (15)
C17—N2—C7—C18 40.39 (13) O3—C14—C15—C16 179.28 (9)
N2—C7—C8—N3 −177.54 (8) C13—C14—C15—C16 0.00 (15)
C18—C7—C8—N3 2.22 (15) C21—O4—C16—C11 179.81 (8)
N2—C7—C8—C9 1.93 (10) C21—O4—C16—C15 −1.66 (13)
C18—C7—C8—C9 −178.31 (9) C12—C11—C16—O4 176.04 (8)
C10—N3—C8—C7 −174.99 (8) C10—C11—C16—O4 −4.24 (13)
C10—N3—C8—C9 5.66 (14) C12—C11—C16—C15 −2.52 (14)
N2—N1—C9—O1 169.88 (8) C10—C11—C16—C15 177.20 (8)
C6—N1—C9—O1 14.78 (14) C14—C15—C16—O4 −176.49 (9)
N2—N1—C9—C8 −7.20 (9) C14—C15—C16—C11 1.98 (14)
C6—N1—C9—C8 −162.30 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10A···O1 0.954 (13) 2.331 (13) 3.0112 (11) 127.8 (10)
C4—H4A···O1i 0.969 (13) 2.541 (13) 3.2628 (12) 131.4 (10)
C20—H20A···N3ii 0.996 (14) 2.577 (14) 3.5383 (13) 162.1 (12)
C20—H20C···O2iii 0.977 (14) 2.509 (14) 3.4470 (13) 160.8 (12)
C20—H20C···O3iii 0.977 (14) 2.495 (15) 3.2779 (13) 137.0 (11)

Symmetry codes: (i) x, −y−1/2, z+1/2; (ii) x, −y+1/2, z−1/2; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5480).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Dongfang, X. U., Shuzhi, M. A., Guangying, D. U., Qizhuang, H. E. & Dazhi, S. (2008). J. Rare Earths, 26, 643–647.
  5. Kamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. (2010). Eur. J. Med. Chem.45, 572–580. [DOI] [PubMed]
  6. Ramesh, R. & Maheswaran, S. (2003). J. Inorg. Biochem., 96, 457–462. [DOI] [PubMed]
  7. Sastry, C. S. P. & Rao, A. R. M. (1988). J. Pharmacol. Methods, 26, 643–647.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Food Chem.120, 1011–1018.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021586/hb5480sup1.cif

e-66-o1656-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021586/hb5480Isup2.hkl

e-66-o1656-Isup2.hkl (269.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES