Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 23;66(Pt 7):o1748. doi: 10.1107/S1600536810023160

1-(Morpholino­meth­yl)indoline-2,3-dione

Ying Tang a, Jie Zhang a, Yanqing Miao b, Gang Chen a,*
PMCID: PMC3006973  PMID: 21587964

Abstract

In the title compound, C13H14N2O3, the morpholine ring displays a chair conformation, with the (2,3-dioxoindolin-1-yl)methyl group in an equatorial position. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis of isatin-N-Mannich bases, see: Varma & Nobles ((1966). For the bioactivity of isatin derivatives, see: Glover et al. (1980, 1988); Maysinger et al. (1980).graphic file with name e-66-o1748-scheme1.jpg

Experimental

Crystal data

  • C13H14N2O3

  • M r = 246.26

  • Monoclinic, Inline graphic

  • a = 11.608 (2) Å

  • b = 8.2818 (17) Å

  • c = 12.595 (3) Å

  • β = 100.20 (3)°

  • V = 1191.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.26 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.979, T max = 0.984

  • 7614 measured reflections

  • 3556 independent reflections

  • 2275 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.144

  • S = 0.99

  • 3556 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023160/rz2460sup1.cif

e-66-o1748-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023160/rz2460Isup2.hkl

e-66-o1748-Isup2.hkl (154.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.93 2.47 3.349 (2) 158
C5—H5A⋯O2ii 0.93 2.52 3.216 (2) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported financially by two grants from the National Science Foundation of China (No. 50874092) and the Natural Science Research Plan Projects of Shaanxi Science and Technology Department (SJ08B20).

supplementary crystallographic information

Comment

Isatin has draw great attention from being discovered as a component of endogenous monoamine oxidase (MAO) inhibitory activity (tribulin) and subsequently identified as a selective inhibitor of MAO B at low concentrations (Glover et al., 1980, 1988). In the following years, many isatin derivatives, such as isatin hydrazono, isatin Mannich bases and isatin based spiroazetidinones, have also been reported to possess anticonvulsant activity (Maysinger, et al., 1980). Herein we report the synthesis and crystal structure of the title compound.

The X-ray structural analysis confirmed the assignment of the structure from spectroscopic data. The molecular structure of the title compound is depicted in Fig. 1. Geometric parameters of the title compound are in the usual ranges. The morpholin ring displays a typical chair conformation, with the (2,3-dioxoindolin-1-yl)methyl group in equatorial position. In the crystal structure, the molecules are linked into a three-dimensional network by C—H···O hydrogen bonds (Table 1).

Experimental

The title compound was synthesized according the literature method (Varma & Nobles, 1966). Isatin (1 mmol), formaldehyde (1.2 mmol) and morpholin (1.2 mmol) were dissolved in methanol (20 ml). The mixture was refluxed until the disappearance of isatin, as evidenced by thin-layer chromatography. The solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate = 1:1 v/v), giving the title compound. 1H-NMR (D6—DMSO, 400 MHz): 7.61 (2H, m), 7.15 (1H, t, J = 7.2 Hz), 7.09 (1H, d, J = 8.0 Hz), 4.45 (2H, s), 3.70 (4H, t, J = 4.8 Hz), 2.63 (4H, t, J = 4.8 Hz); MS (EI) m/z: 246 (M+). 20 mg of the title compound was dissolved in 50 ml methanol and the solution was kept at room temperature for 4 d. Slow evaporation of the solvent gave orange single crystals of the title compound suitable for X-ray analysis.

Refinement

The H atoms attached to atom C9 were located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined as riding, with C—H = 0.93-0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 drawing of the title compound, with the atom-numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C13H14N2O3 F(000) = 520
Mr = 246.26 Dx = 1.373 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7356 reflections
a = 11.608 (2) Å θ = 1.5–25.0°
b = 8.2818 (17) Å µ = 0.10 mm1
c = 12.595 (3) Å T = 293 K
β = 100.20 (3)° Block, orange
V = 1191.7 (4) Å3 0.26 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 3556 independent reflections
Radiation source: fine-focus sealed tube 2275 reflections with I > 2σ(I)
graphite Rint = 0.021
phi and ω scans θmax = 30.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −15→15
Tmin = 0.979, Tmax = 0.984 k = −11→10
7614 measured reflections l = −17→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
3556 reflections (Δ/σ)max = 0.039
171 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N2 0.91766 (9) 0.23385 (12) 0.11391 (8) 0.0368 (3)
N1 0.73127 (8) 0.33226 (11) 0.00535 (8) 0.0347 (3)
C7 0.68098 (9) 0.48053 (14) 0.03062 (9) 0.0313 (3)
O2 0.59676 (8) 0.46330 (13) −0.24949 (7) 0.0527 (3)
C10 0.98088 (11) 0.23531 (16) 0.02322 (11) 0.0414 (3)
H10A 0.9591 0.3302 −0.0209 0.050*
H10B 0.9604 0.1404 −0.0212 0.050*
O3 1.14402 (7) 0.37200 (13) 0.13337 (9) 0.0564 (3)
O1 0.73752 (10) 0.19019 (12) −0.15122 (8) 0.0567 (3)
C6 0.68346 (10) 0.54811 (15) 0.13085 (10) 0.0379 (3)
H6A 0.7192 0.4957 0.1934 0.046*
C8 0.62332 (10) 0.55651 (14) −0.06320 (9) 0.0345 (3)
C2 0.63447 (10) 0.45189 (15) −0.15409 (10) 0.0377 (3)
C9 0.79252 (11) 0.21364 (15) 0.08256 (11) 0.0373 (3)
C5 0.63034 (11) 0.69807 (15) 0.13481 (11) 0.0456 (3)
H5A 0.6323 0.7477 0.2014 0.055*
C1 0.70789 (11) 0.30626 (15) −0.10310 (10) 0.0385 (3)
C3 0.56961 (11) 0.70484 (16) −0.05764 (11) 0.0444 (3)
H3A 0.5311 0.7557 −0.1197 0.053*
C13 0.95237 (11) 0.37262 (17) 0.18371 (11) 0.0435 (3)
H13A 0.9126 0.3692 0.2452 0.052*
H13B 0.9303 0.4718 0.1443 0.052*
C4 0.57469 (12) 0.77531 (16) 0.04263 (12) 0.0495 (4)
H4A 0.5403 0.8757 0.0481 0.059*
C12 1.08328 (12) 0.3691 (2) 0.22195 (12) 0.0540 (4)
H12A 1.1065 0.4616 0.2680 0.065*
H12B 1.1043 0.2721 0.2642 0.065*
C11 1.11103 (11) 0.23690 (17) 0.06581 (12) 0.0514 (4)
H11A 1.1329 0.1385 0.1062 0.062*
H11B 1.1529 0.2397 0.0057 0.062*
H9A 0.7745 (10) 0.1067 (17) 0.0422 (11) 0.038 (3)*
H9B 0.7566 (11) 0.2191 (14) 0.1471 (11) 0.036 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0360 (5) 0.0363 (5) 0.0385 (6) 0.0006 (4) 0.0077 (4) 0.0042 (4)
N1 0.0366 (5) 0.0373 (5) 0.0306 (5) 0.0046 (4) 0.0074 (4) −0.0023 (4)
C7 0.0285 (5) 0.0345 (6) 0.0319 (6) −0.0018 (4) 0.0082 (4) −0.0003 (4)
O2 0.0613 (6) 0.0656 (7) 0.0290 (5) −0.0100 (5) 0.0018 (4) 0.0040 (4)
C10 0.0420 (7) 0.0404 (7) 0.0440 (7) 0.0003 (5) 0.0135 (6) −0.0044 (5)
O3 0.0414 (5) 0.0612 (6) 0.0685 (7) −0.0114 (4) 0.0150 (5) −0.0142 (5)
O1 0.0671 (7) 0.0587 (6) 0.0452 (6) 0.0075 (5) 0.0125 (5) −0.0178 (5)
C6 0.0385 (6) 0.0456 (7) 0.0302 (6) 0.0014 (5) 0.0073 (5) −0.0019 (5)
C8 0.0316 (6) 0.0402 (6) 0.0322 (6) −0.0026 (5) 0.0072 (5) 0.0032 (5)
C2 0.0352 (6) 0.0475 (7) 0.0304 (6) −0.0072 (5) 0.0058 (5) 0.0025 (5)
C9 0.0361 (6) 0.0362 (6) 0.0403 (7) −0.0010 (5) 0.0086 (5) 0.0055 (5)
C5 0.0474 (8) 0.0460 (7) 0.0458 (8) 0.0010 (6) 0.0146 (6) −0.0114 (6)
C1 0.0384 (6) 0.0449 (7) 0.0331 (6) −0.0028 (5) 0.0089 (5) −0.0053 (5)
C3 0.0423 (7) 0.0432 (7) 0.0474 (8) 0.0050 (5) 0.0074 (6) 0.0115 (6)
C13 0.0416 (7) 0.0487 (7) 0.0409 (7) 0.0013 (6) 0.0092 (6) −0.0057 (6)
C4 0.0488 (8) 0.0391 (7) 0.0623 (9) 0.0076 (6) 0.0145 (7) −0.0014 (6)
C12 0.0440 (7) 0.0652 (9) 0.0509 (9) −0.0030 (7) 0.0033 (7) −0.0131 (7)
C11 0.0405 (7) 0.0549 (8) 0.0611 (9) −0.0008 (6) 0.0157 (7) −0.0116 (7)

Geometric parameters (Å, °)

N2—C9 1.4460 (16) C8—C3 1.3850 (17)
N2—C13 1.4596 (16) C8—C2 1.4597 (17)
N2—C10 1.4631 (16) C2—C1 1.5490 (18)
N1—C1 1.3618 (15) C9—H9A 1.024 (14)
N1—C7 1.4199 (14) C9—H9B 0.979 (14)
N1—C9 1.4736 (15) C5—C4 1.382 (2)
C7—C6 1.3765 (16) C5—H5A 0.9300
C7—C8 1.4000 (15) C3—C4 1.383 (2)
O2—C2 1.2075 (15) C3—H3A 0.9300
C10—C11 1.5110 (18) C13—C12 1.5109 (18)
C10—H10A 0.9700 C13—H13A 0.9700
C10—H10B 0.9700 C13—H13B 0.9700
O3—C11 1.4168 (16) C4—H4A 0.9300
O3—C12 1.4217 (17) C12—H12A 0.9700
O1—C1 1.2180 (14) C12—H12B 0.9700
C6—C5 1.3914 (17) C11—H11A 0.9700
C6—H6A 0.9300 C11—H11B 0.9700
C9—N2—C13 114.36 (10) C4—C5—C6 121.82 (12)
C9—N2—C10 113.97 (10) C4—C5—H5A 119.1
C13—N2—C10 109.92 (10) C6—C5—H5A 119.1
C1—N1—C7 110.17 (10) O1—C1—N1 126.89 (12)
C1—N1—C9 122.94 (10) O1—C1—C2 126.25 (12)
C7—N1—C9 126.73 (10) N1—C1—C2 106.86 (10)
C6—C7—C8 121.37 (11) C4—C3—C8 118.27 (12)
C6—C7—N1 127.92 (11) C4—C3—H3A 120.9
C8—C7—N1 110.71 (10) C8—C3—H3A 120.9
N2—C10—C11 109.34 (11) N2—C13—C12 109.35 (11)
N2—C10—H10A 109.8 N2—C13—H13A 109.8
C11—C10—H10A 109.8 C12—C13—H13A 109.8
N2—C10—H10B 109.8 N2—C13—H13B 109.8
C11—C10—H10B 109.8 C12—C13—H13B 109.8
H10A—C10—H10B 108.3 H13A—C13—H13B 108.3
C11—O3—C12 109.81 (11) C3—C4—C5 120.66 (13)
C7—C6—C5 117.28 (11) C3—C4—H4A 119.7
C7—C6—H6A 121.4 C5—C4—H4A 119.7
C5—C6—H6A 121.4 O3—C12—C13 111.11 (12)
C3—C8—C7 120.55 (11) O3—C12—H12A 109.4
C3—C8—C2 132.02 (11) C13—C12—H12A 109.4
C7—C8—C2 107.44 (10) O3—C12—H12B 109.4
O2—C2—C8 131.85 (13) C13—C12—H12B 109.4
O2—C2—C1 123.32 (12) H12A—C12—H12B 108.0
C8—C2—C1 104.82 (10) O3—C11—C10 111.53 (11)
N2—C9—N1 116.55 (10) O3—C11—H11A 109.3
N2—C9—H9A 110.1 (7) C10—C11—H11A 109.3
N1—C9—H9A 102.5 (7) O3—C11—H11B 109.3
N2—C9—H9B 108.9 (7) C10—C11—H11B 109.3
N1—C9—H9B 106.9 (7) H11A—C11—H11B 108.0
H9A—C9—H9B 111.9 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6A···O1i 0.93 2.47 3.349 (2) 158
C5—H5A···O2ii 0.93 2.52 3.216 (2) 131

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2460).

References

  1. Bruker (2001). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Glover, V., Halket, J. M., Watkins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1988). J. Neurochem.51, 656–659. [DOI] [PubMed]
  3. Glover, V., Reveley, M. A. & Sandler, M. (1980). Biochem. Pharmacol.29, 467–470. [DOI] [PubMed]
  4. Maysinger, D. & Movrin, M. (1980). Arzneim. Forschung.30, 1839–1840. [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Varma, R. S. & Nobles, W. L. (1966). J. Heterocycl. Chem.3, 462–465.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023160/rz2460sup1.cif

e-66-o1748-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023160/rz2460Isup2.hkl

e-66-o1748-Isup2.hkl (154.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES