Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 16;66(Pt 7):m771. doi: 10.1107/S1600536810021288

Acetato­aqua­{4,4′,6,6′-tetra-tert-butyl-2,2′-[(2-pyridyl­meth­yl)imino­dimethyl­ene]diphenolato}manganese(III) ethanol solvate

Elliott Chard a, Louise N Dawe b, Christopher M Kozak a,*
PMCID: PMC3006980  PMID: 21587701

Abstract

In the title complex, [Mn(C36H50N2O2)(CH3COO)(H2O)]·CH3CH2OH, the MnIII atom is in an octa­hedral environment and is coordinated by the tetra­dentate amine–bis­(phenolate) ligand, a monodentate acetate anion and a water mol­ecule. An ethanol solvent mol­ecule is also found in the asymmetric unit. The structure displays O—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For a related structure, see: van Gorkum et al. (2008). For the structure of the unmetallated ligand, see: Chmura et al. (2006). For synthetic procedures, see: Kerton et al. (2008); Shimazaki et al. (2000).graphic file with name e-66-0m771-scheme1.jpg

Experimental

Crystal data

  • [Mn(C36H50N2O2)(C2H3O2)(H2O)]·C2H6O

  • M r = 720.87

  • Monoclinic, Inline graphic

  • a = 16.505 (3) Å

  • b = 10.8310 (16) Å

  • c = 26.512 (5) Å

  • β = 118.798 (3)°

  • V = 4153.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 153 K

  • 0.40 × 0.30 × 0.24 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 2000) T min = 0.906, T max = 0.948

  • 44205 measured reflections

  • 8589 independent reflections

  • 8248 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.138

  • S = 1.10

  • 8589 reflections

  • 444 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2005); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021288/pv2284sup1.cif

e-66-0m771-sup1.cif (29.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021288/pv2284Isup2.hkl

e-66-0m771-Isup2.hkl (420.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H41A⋯O6i 0.92 1.91 2.799 (2) 160
O6—H42⋯O4ii 0.91 1.81 2.723 (3) 171
O5—H41B⋯O4 0.93 1.79 2.677 (2) 160
C4—H4B⋯O1 0.98 2.36 2.991 (4) 122
C5—H5C⋯O1 0.98 2.28 2.929 (3) 123
C15—H15B⋯O5 0.99 2.54 3.202 (3) 124
C34—H34C⋯O2 0.98 2.45 3.102 (3) 123
C35—H35A⋯O2 0.98 2.32 3.010 (3) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by Memorial University of Newfoundland, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Foundation for Innovation and the Provincial Government of Newfoundland and Labrador.

supplementary crystallographic information

Comment

In the complex acetato[2-pyridylamino-N,N-bis(2-methylene-4,6-tert-butylphenolato)]aquamanganese(III) (1), the manganese(III) ion resides in a distorted octahedral geometry. Its coordination sphere is occupied by two phenolate oxygen atoms, a tertiary amine and a pyridine nitrogen donor. The phenolate oxygens, O1 and O2, of the tetradentate ligand are trans orientated and exhibit Mn1—O1 and Mn1—O2 bond lengths of 1.8532 (14) and 1.8770 (14) Å, respectively. The O3 atom of the monodentate acetate group is trans to the amine nitrogen, N1, and the Mn1—O3 and Mn1—N1 bond distances are 1.9958 (15) and 2.1058 (16) Å, respectively. The water ligand, O5, is trans to the pyridine nitrogen donor, N2. The Mn ion is Jahn-Teller distorted along the Mn1—N2 and Mn1—O5 bonds, which are considerably elongated giving bond distances of 2.2543 (17) and 2.2434 (15) Å, respectively. This elongated axis is similar to that reported by Van Gorkum et al. (2008), except that the previously reported structure possesses a bidentate acetate and no water ligand. Bond angles of trans-orientated ligands around Mn are slightly bent and range between 170.77 (6)° for O3—Mn1—N1 and 177.70 (6)° for O1—Mn1—O2.

The complex exhibits both intra- and intermolecular hydrogen bonding. The water ligand acts as a hydrogen bond donor to the uncoordinated O4 of the acetate ligand. The O4···O5 interatomic distance is 2.677 (2) Å and within the typical range for hydrogen bonding between oxygen-containing hydrogen bond donor-acceptors. The uncoordinated O4 of the acetate group also displays intermolecular hydrogen bonding to an ethanol solvate molecule. The interatomic distance between O4 of the acetate and O6 [x, y-1, z] of the ethanol molecule is 2.723 (2) Å, which is within the sum of the van der Waals radii. The ethanol ligand is the hydrogen bond donor and the acetate O6 is the acceptor. Another intermolecular hydrogen bond exists between the coordinated water ligand and the ethanol oxygen atom of a second ethanol molecule (2.7989 (18) Å for O5···O6 [-x+1, y-1/2, -z+3/2]). In this interaction, the water ligand acts as hydrogen bond donor and the solvate ethanol O-atom is the acceptor. These multiple intermolecular hydrogen bonding interactions effectively result in chains where the six-coordinate Mn complexes are bridged by solvate ethanol molecules.

Experimental

The 2-pyridylamino-N,N-bis(2-methylene-4,6-tert-butylphenol) ligand (abbreviated H2(O2NN')) was prepared according to the published methods (Kerton et al., 2008; Shimazaki et al., 2000). Mn(OAc)2.4H2O (0.5033 g, 2.0 mmol) and H2(O2NN') (0.5619 g, 1.00 mmol) were dissolved in 95% ethanol (20 ml) and heated to reflux for one hour. The resulting dark purple solution was filtered through a glass frit while hot. Distilled H2O (10 ml) was added to the dark purple filtrate. As the solution cooled to room temperature, dark purple crystals suitable for X-ray diffraction precipitated out of the ethanol/water medium (580 mg, 86% yield). MS (MALDI-TOF) m/z, intensity (ion): 656.3305, 20% ([M—H2O]+); 596.3156, 42% ([M—H2O-OAc]+).

Refinement

H(41 A, 41B) and H(42) were located in difference map positions, and refined on a riding model. All other hydrogen atoms were introduced in calculated positions with distances C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms and refined on a riding model. Isotropic thermal parameters 1.2 times that of their bonding partners were allowed for all H-atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of 1 with atom numbering scheme. Ellipsoids drawn at the 50% probability level. Only the H-atoms on the water ligand (H 41a and H41b) are shown. Ethanol solvate molecule removed for clarity.

Fig. 2.

Fig. 2.

Molecular structure of 1 showing intermolecular hydrogen-bonded linear chain. Ellipsoids drawn at the 50% probability level and t-butyl groups on phenolate rings removed for clarity.

Crystal data

[Mn(C36H50N2O2)(C2H3O2)(H2O)]·C2H6O F(000) = 1552
Mr = 720.87 Dx = 1.153 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybc Cell parameters from 15117 reflections
a = 16.505 (3) Å θ = 2.0–30.7°
b = 10.8310 (16) Å µ = 0.36 mm1
c = 26.512 (5) Å T = 153 K
β = 118.798 (3)° Irregular, purple
V = 4153.2 (12) Å3 0.40 × 0.30 × 0.24 mm
Z = 4

Data collection

Rigaku Saturn diffractometer 8589 independent reflections
Radiation source: fine-focus sealed tube 8248 reflections with I > 2σ(I)
graphite - Rigaku SHINE Rint = 0.032
Detector resolution: 14.63 pixels mm-1 θmax = 26.5°, θmin = 2.7°
ω scans h = −20→20
Absorption correction: numerical (ABSCOR; Higashi, 2000) k = −13→13
Tmin = 0.906, Tmax = 0.948 l = −33→33
44205 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.069P)2 + 2.8924P] where P = (Fo2 + 2Fc2)/3
8589 reflections (Δ/σ)max = 0.001
444 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.569186 (18) 0.22108 (3) 0.887302 (11) 0.02241 (10)
O1 0.44186 (9) 0.23550 (13) 0.85424 (7) 0.0321 (3)
O2 0.69749 (9) 0.20020 (12) 0.91944 (6) 0.0268 (3)
O3 0.55745 (10) 0.04484 (13) 0.90481 (6) 0.0328 (3)
O4 0.57756 (14) −0.05365 (15) 0.83781 (8) 0.0495 (4)
O5 0.55651 (10) 0.18014 (14) 0.80084 (6) 0.0334 (3)
H41A 0.4974 0.1796 0.7701 0.041*
H41B 0.5646 0.0956 0.8061 0.041*
O6 0.60773 (12) 0.72486 (15) 0.80117 (7) 0.0424 (4)
H42 0.6016 0.8027 0.8123 0.051*
N1 0.57820 (10) 0.41364 (14) 0.88018 (6) 0.0243 (3)
N2 0.58705 (12) 0.28484 (16) 0.97301 (7) 0.0288 (4)
C1 0.38156 (13) 0.32682 (18) 0.82789 (8) 0.0271 (4)
C2 0.28873 (14) 0.31164 (19) 0.81628 (9) 0.0325 (4)
C3 0.25997 (16) 0.1931 (2) 0.83644 (12) 0.0440 (6)
C4 0.3141 (2) 0.1835 (3) 0.90203 (13) 0.0579 (7)
H4A 0.3029 0.2574 0.9191 0.070*
H4B 0.3802 0.1767 0.9145 0.070*
H4C 0.2937 0.1102 0.9146 0.070*
C5 0.2776 (2) 0.0777 (2) 0.80967 (15) 0.0582 (7)
H5A 0.2429 0.0839 0.7676 0.070*
H5B 0.2574 0.0042 0.8222 0.070*
H5C 0.3438 0.0711 0.8221 0.070*
C6 0.15607 (19) 0.1929 (3) 0.81807 (17) 0.0650 (9)
H6A 0.1413 0.2656 0.8341 0.078*
H6B 0.1409 0.1179 0.8325 0.078*
H6C 0.1200 0.1949 0.7760 0.078*
C7 0.22611 (14) 0.4063 (2) 0.78625 (9) 0.0342 (4)
H7 0.1636 0.3966 0.7778 0.041*
C8 0.25052 (14) 0.5142 (2) 0.76797 (8) 0.0327 (4)
C9 0.18036 (15) 0.6155 (2) 0.73282 (9) 0.0392 (5)
C10 0.08308 (18) 0.5871 (3) 0.72413 (12) 0.0579 (7)
H10A 0.0626 0.5065 0.7054 0.070*
H10B 0.0399 0.6511 0.6999 0.070*
H10C 0.0848 0.5856 0.7616 0.070*
C11 0.17281 (18) 0.6194 (3) 0.67266 (11) 0.0511 (6)
H11A 0.1527 0.5385 0.6542 0.061*
H11B 0.2333 0.6397 0.6763 0.061*
H11C 0.1276 0.6823 0.6492 0.061*
C12 0.2115 (2) 0.7395 (3) 0.76157 (14) 0.0730 (11)
H12A 0.2734 0.7578 0.7672 0.088*
H12B 0.2130 0.7380 0.7990 0.088*
H12C 0.1682 0.8034 0.7372 0.088*
C13 0.34281 (14) 0.52737 (19) 0.78144 (8) 0.0299 (4)
H13 0.3617 0.6006 0.7703 0.036*
C14 0.40805 (13) 0.43584 (18) 0.81089 (8) 0.0264 (4)
C15 0.50525 (12) 0.45405 (18) 0.82128 (8) 0.0269 (4)
H15A 0.5145 0.5426 0.8162 0.032*
H15B 0.5132 0.4071 0.7919 0.032*
C16 0.56725 (14) 0.48099 (18) 0.92526 (8) 0.0294 (4)
H16A 0.5015 0.5040 0.9098 0.035*
H16B 0.6038 0.5582 0.9348 0.035*
C17 0.59771 (13) 0.40683 (19) 0.97957 (8) 0.0295 (4)
C18 0.62907 (16) 0.4634 (2) 1.03279 (9) 0.0414 (5)
H18 0.6371 0.5504 1.0367 0.050*
C19 0.64830 (17) 0.3901 (3) 1.08012 (10) 0.0478 (6)
H19 0.6702 0.4262 1.1171 0.057*
C20 0.63538 (17) 0.2641 (3) 1.07310 (10) 0.0449 (6)
H20 0.6471 0.2125 1.1049 0.054*
C21 0.60499 (16) 0.2145 (2) 1.01892 (9) 0.0367 (5)
H21 0.5965 0.1277 1.0140 0.044*
C22 0.67118 (13) 0.44181 (19) 0.88544 (9) 0.0308 (4)
H22A 0.6774 0.3970 0.8549 0.037*
H22B 0.6751 0.5313 0.8794 0.037*
C23 0.74940 (13) 0.40598 (19) 0.94303 (8) 0.0289 (4)
C24 0.80855 (14) 0.4939 (2) 0.98171 (9) 0.0339 (4)
H24 0.7978 0.5791 0.9723 0.041*
C25 0.88294 (14) 0.4583 (2) 1.03370 (9) 0.0345 (4)
C26 0.94866 (16) 0.5507 (2) 1.07875 (11) 0.0437 (5)
C27 0.9188 (2) 0.6838 (3) 1.06142 (15) 0.0642 (8)
H27A 0.8558 0.6952 1.0554 0.077*
H27B 0.9201 0.7025 1.0257 0.077*
H27C 0.9610 0.7393 1.0920 0.077*
C28 1.04710 (18) 0.5335 (3) 1.08810 (15) 0.0664 (9)
H28A 1.0666 0.4478 1.0992 0.080*
H28B 1.0892 0.5891 1.1187 0.080*
H28C 1.0484 0.5527 1.0524 0.080*
C29 0.9485 (2) 0.5255 (3) 1.13607 (13) 0.0650 (8)
H29A 0.9677 0.4401 1.1481 0.078*
H29B 0.8861 0.5384 1.1308 0.078*
H29C 0.9916 0.5821 1.1657 0.078*
C30 0.89708 (13) 0.3316 (2) 1.04407 (9) 0.0328 (4)
H30 0.9497 0.3061 1.0786 0.039*
C31 0.83970 (13) 0.24007 (19) 1.00753 (8) 0.0283 (4)
C32 0.86199 (14) 0.1024 (2) 1.02091 (9) 0.0322 (4)
C33 0.95429 (16) 0.0820 (2) 1.07562 (10) 0.0445 (5)
H33A 0.9521 0.1204 1.1084 0.053*
H33B 1.0043 0.1193 1.0708 0.053*
H33C 0.9656 −0.0068 1.0826 0.053*
C34 0.78670 (16) 0.0385 (2) 1.02959 (11) 0.0430 (5)
H34A 0.7825 0.0778 1.0615 0.052*
H34B 0.8024 −0.0490 1.0384 0.052*
H34C 0.7272 0.0457 0.9943 0.052*
C35 0.86841 (16) 0.0416 (2) 0.97090 (10) 0.0406 (5)
H35A 0.8100 0.0534 0.9352 0.049*
H35B 0.8803 −0.0470 0.9785 0.049*
H35C 0.9190 0.0793 0.9669 0.049*
C36 0.76088 (13) 0.27986 (18) 0.95627 (8) 0.0259 (4)
C37 0.56916 (15) −0.0520 (2) 0.88233 (10) 0.0367 (5)
C38 0.5741 (3) −0.1711 (2) 0.91295 (15) 0.0637 (8)
H38A 0.5273 −0.2285 0.8861 0.076*
H38B 0.5628 −0.1547 0.9454 0.076*
H38C 0.6356 −0.2077 0.9273 0.076*
C39 0.6996 (2) 0.7183 (3) 0.81098 (13) 0.0624 (8)
H39A 0.7033 0.7619 0.7793 0.075*
H39B 0.7155 0.6307 0.8097 0.075*
C40 0.7703 (3) 0.7727 (4) 0.86721 (17) 0.0810 (11)
H40A 0.8319 0.7648 0.8707 0.097*
H40B 0.7687 0.7287 0.8990 0.097*
H40C 0.7563 0.8602 0.8686 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.02138 (16) 0.01881 (16) 0.02466 (16) 0.00141 (10) 0.00919 (12) 0.00055 (10)
O1 0.0238 (7) 0.0230 (7) 0.0456 (8) 0.0015 (5) 0.0137 (6) 0.0040 (6)
O2 0.0223 (6) 0.0251 (7) 0.0287 (7) 0.0014 (5) 0.0087 (5) −0.0004 (5)
O3 0.0329 (7) 0.0229 (7) 0.0430 (8) 0.0018 (6) 0.0186 (6) 0.0032 (6)
O4 0.0725 (12) 0.0277 (8) 0.0485 (9) 0.0103 (8) 0.0294 (9) 0.0003 (7)
O5 0.0375 (8) 0.0311 (8) 0.0272 (7) 0.0049 (6) 0.0122 (6) −0.0005 (6)
O6 0.0423 (9) 0.0312 (8) 0.0453 (9) −0.0011 (7) 0.0145 (7) −0.0087 (7)
N1 0.0218 (7) 0.0212 (8) 0.0254 (7) 0.0026 (6) 0.0079 (6) 0.0025 (6)
N2 0.0298 (8) 0.0310 (9) 0.0271 (8) 0.0025 (7) 0.0148 (7) 0.0013 (6)
C1 0.0238 (9) 0.0236 (9) 0.0285 (9) 0.0016 (7) 0.0084 (7) −0.0038 (7)
C2 0.0254 (9) 0.0281 (10) 0.0402 (11) −0.0011 (8) 0.0128 (8) −0.0081 (8)
C3 0.0305 (11) 0.0302 (11) 0.0725 (16) −0.0047 (9) 0.0257 (11) −0.0028 (11)
C4 0.0577 (16) 0.0526 (16) 0.0736 (19) −0.0074 (13) 0.0397 (15) 0.0136 (14)
C5 0.0496 (15) 0.0335 (13) 0.093 (2) −0.0084 (11) 0.0355 (15) −0.0092 (13)
C6 0.0382 (14) 0.0462 (15) 0.116 (3) −0.0040 (12) 0.0415 (16) 0.0043 (16)
C7 0.0236 (9) 0.0340 (11) 0.0388 (11) 0.0027 (8) 0.0099 (8) −0.0072 (9)
C8 0.0282 (9) 0.0357 (11) 0.0250 (9) 0.0094 (8) 0.0056 (8) −0.0043 (8)
C9 0.0305 (10) 0.0400 (12) 0.0339 (10) 0.0135 (9) 0.0049 (8) 0.0011 (9)
C10 0.0385 (13) 0.073 (2) 0.0539 (15) 0.0227 (13) 0.0158 (11) 0.0095 (14)
C11 0.0445 (13) 0.0565 (16) 0.0406 (12) 0.0159 (12) 0.0112 (11) 0.0107 (11)
C12 0.0608 (18) 0.0446 (16) 0.0658 (19) 0.0244 (14) −0.0077 (15) −0.0124 (14)
C13 0.0312 (10) 0.0279 (10) 0.0243 (8) 0.0059 (8) 0.0085 (8) 0.0011 (7)
C14 0.0246 (9) 0.0262 (9) 0.0235 (8) 0.0019 (7) 0.0076 (7) −0.0022 (7)
C15 0.0250 (9) 0.0236 (9) 0.0263 (9) 0.0029 (7) 0.0076 (7) 0.0053 (7)
C16 0.0301 (9) 0.0223 (9) 0.0298 (9) 0.0017 (7) 0.0096 (8) −0.0042 (7)
C17 0.0245 (9) 0.0316 (10) 0.0291 (9) 0.0027 (8) 0.0104 (7) −0.0043 (8)
C18 0.0379 (11) 0.0448 (13) 0.0345 (11) 0.0052 (10) 0.0120 (9) −0.0106 (10)
C19 0.0436 (13) 0.0687 (18) 0.0267 (10) 0.0108 (12) 0.0134 (9) −0.0070 (10)
C20 0.0446 (13) 0.0624 (16) 0.0304 (11) 0.0108 (11) 0.0202 (10) 0.0081 (10)
C21 0.0384 (11) 0.0418 (12) 0.0339 (11) 0.0039 (9) 0.0206 (9) 0.0070 (9)
C22 0.0236 (9) 0.0281 (10) 0.0359 (10) −0.0003 (7) 0.0105 (8) 0.0082 (8)
C23 0.0213 (8) 0.0282 (10) 0.0332 (10) −0.0005 (7) 0.0100 (8) 0.0026 (8)
C24 0.0251 (9) 0.0271 (10) 0.0446 (11) −0.0018 (8) 0.0129 (9) 0.0012 (9)
C25 0.0257 (9) 0.0366 (11) 0.0373 (10) −0.0043 (8) 0.0121 (8) −0.0064 (9)
C26 0.0315 (11) 0.0415 (13) 0.0470 (13) −0.0067 (9) 0.0099 (10) −0.0123 (10)
C27 0.0541 (16) 0.0422 (15) 0.0723 (19) −0.0112 (13) 0.0113 (14) −0.0152 (14)
C28 0.0325 (12) 0.070 (2) 0.083 (2) −0.0160 (13) 0.0170 (13) −0.0335 (17)
C29 0.0725 (19) 0.0625 (19) 0.0508 (15) −0.0115 (16) 0.0223 (14) −0.0231 (14)
C30 0.0249 (9) 0.0385 (11) 0.0297 (9) 0.0011 (8) 0.0089 (8) −0.0005 (8)
C31 0.0223 (9) 0.0333 (10) 0.0276 (9) 0.0034 (8) 0.0107 (8) 0.0026 (8)
C32 0.0273 (9) 0.0321 (11) 0.0312 (10) 0.0050 (8) 0.0093 (8) 0.0048 (8)
C33 0.0372 (12) 0.0412 (13) 0.0396 (12) 0.0103 (10) 0.0060 (10) 0.0066 (10)
C34 0.0391 (12) 0.0374 (12) 0.0503 (13) 0.0061 (10) 0.0198 (10) 0.0167 (10)
C35 0.0376 (11) 0.0367 (12) 0.0422 (12) 0.0145 (9) 0.0149 (10) −0.0001 (9)
C36 0.0200 (8) 0.0288 (10) 0.0271 (9) 0.0009 (7) 0.0099 (7) 0.0003 (7)
C37 0.0367 (11) 0.0229 (10) 0.0462 (12) 0.0007 (8) 0.0165 (10) 0.0005 (8)
C38 0.094 (2) 0.0286 (13) 0.084 (2) 0.0047 (14) 0.0548 (19) 0.0088 (13)
C39 0.0674 (19) 0.070 (2) 0.0544 (16) 0.0051 (15) 0.0331 (15) 0.0131 (14)
C40 0.062 (2) 0.079 (3) 0.080 (2) −0.0136 (18) 0.0171 (18) 0.0095 (19)

Geometric parameters (Å, °)

Mn1—O1 1.8532 (14) C16—H16A 0.9900
Mn1—O2 1.8770 (14) C16—H16B 0.9900
Mn1—O3 1.9958 (15) C17—C18 1.389 (3)
Mn1—N1 2.1058 (16) C18—C19 1.387 (4)
Mn1—O5 2.2434 (15) C18—H18 0.9500
Mn1—N2 2.2543 (17) C19—C20 1.379 (4)
O1—C1 1.337 (2) C19—H19 0.9500
O2—C36 1.345 (2) C20—C21 1.382 (3)
O3—C37 1.266 (3) C20—H20 0.9500
O4—C37 1.253 (3) C21—H21 0.9500
O5—H41A 0.9215 C22—C23 1.500 (3)
O5—H41B 0.9263 C22—H22A 0.9900
O6—C39 1.412 (4) C22—H22B 0.9900
O6—H42 0.9153 C23—C24 1.395 (3)
N1—C16 1.484 (2) C23—C36 1.400 (3)
N1—C22 1.504 (2) C24—C25 1.388 (3)
N1—C15 1.506 (2) C24—H24 0.9500
N2—C17 1.333 (3) C25—C30 1.397 (3)
N2—C21 1.342 (3) C25—C26 1.535 (3)
C1—C14 1.407 (3) C26—C27 1.521 (4)
C1—C2 1.420 (3) C26—C28 1.532 (3)
C2—C7 1.400 (3) C26—C29 1.545 (4)
C2—C3 1.550 (3) C27—H27A 0.9800
C3—C4 1.528 (4) C27—H27B 0.9800
C3—C5 1.533 (4) C27—H27C 0.9800
C3—C6 1.541 (3) C28—H28A 0.9800
C4—H4A 0.9800 C28—H28B 0.9800
C4—H4B 0.9800 C28—H28C 0.9800
C4—H4C 0.9800 C29—H29A 0.9800
C5—H5A 0.9800 C29—H29B 0.9800
C5—H5B 0.9800 C29—H29C 0.9800
C5—H5C 0.9800 C30—C31 1.391 (3)
C6—H6A 0.9800 C30—H30 0.9500
C6—H6B 0.9800 C31—C36 1.422 (3)
C6—H6C 0.9800 C31—C32 1.536 (3)
C7—C8 1.396 (3) C32—C35 1.530 (3)
C7—H7 0.9500 C32—C33 1.531 (3)
C8—C13 1.394 (3) C32—C34 1.534 (3)
C8—C9 1.541 (3) C33—H33A 0.9800
C9—C12 1.507 (4) C33—H33B 0.9800
C9—C11 1.539 (3) C33—H33C 0.9800
C9—C10 1.539 (4) C34—H34A 0.9800
C10—H10A 0.9800 C34—H34B 0.9800
C10—H10B 0.9800 C34—H34C 0.9800
C10—H10C 0.9800 C35—H35A 0.9800
C11—H11A 0.9800 C35—H35B 0.9800
C11—H11B 0.9800 C35—H35C 0.9800
C11—H11C 0.9800 C37—C38 1.506 (3)
C12—H12A 0.9800 C38—H38A 0.9800
C12—H12B 0.9800 C38—H38B 0.9800
C12—H12C 0.9800 C38—H38C 0.9800
C13—C14 1.394 (3) C39—C40 1.501 (5)
C13—H13 0.9500 C39—H39A 0.9900
C14—C15 1.504 (3) C39—H39B 0.9900
C15—H15A 0.9900 C40—H40A 0.9800
C15—H15B 0.9900 C40—H40B 0.9800
C16—C17 1.508 (3) C40—H40C 0.9800
O1—Mn1—O2 177.70 (6) N2—C17—C18 122.0 (2)
O1—Mn1—O3 88.60 (6) N2—C17—C16 116.18 (17)
O2—Mn1—O3 89.65 (6) C18—C17—C16 121.6 (2)
O1—Mn1—N1 89.26 (6) C19—C18—C17 118.5 (2)
O2—Mn1—N1 92.70 (6) C19—C18—H18 120.7
O3—Mn1—N1 170.77 (6) C17—C18—H18 120.7
O1—Mn1—O5 90.40 (6) C20—C19—C18 119.4 (2)
O2—Mn1—O5 88.25 (6) C20—C19—H19 120.3
O3—Mn1—O5 94.41 (6) C18—C19—H19 120.3
N1—Mn1—O5 94.59 (6) C19—C20—C21 118.7 (2)
O1—Mn1—N2 91.08 (7) C19—C20—H20 120.7
O2—Mn1—N2 90.47 (6) C21—C20—H20 120.7
O3—Mn1—N2 92.22 (6) N2—C21—C20 122.2 (2)
N1—Mn1—N2 78.84 (6) N2—C21—H21 118.9
O5—Mn1—N2 173.24 (6) C20—C21—H21 118.9
C1—O1—Mn1 134.32 (13) C23—C22—N1 112.42 (16)
C36—O2—Mn1 124.42 (12) C23—C22—H22A 109.1
C37—O3—Mn1 128.95 (14) N1—C22—H22A 109.1
Mn1—O5—H41A 116.2 C23—C22—H22B 109.1
Mn1—O5—H41B 96.1 N1—C22—H22B 109.1
H41A—O5—H41B 98.1 H22A—C22—H22B 107.9
C39—O6—H42 105.3 C24—C23—C36 121.28 (18)
C16—N1—C22 109.90 (15) C24—C23—C22 121.74 (19)
C16—N1—C15 110.22 (14) C36—C23—C22 116.98 (18)
C22—N1—C15 107.91 (14) C25—C24—C23 120.8 (2)
C16—N1—Mn1 111.93 (12) C25—C24—H24 119.6
C22—N1—Mn1 107.80 (11) C23—C24—H24 119.6
C15—N1—Mn1 108.97 (11) C24—C25—C30 116.91 (19)
C17—N2—C21 119.11 (19) C24—C25—C26 123.2 (2)
C17—N2—Mn1 112.33 (13) C30—C25—C26 119.9 (2)
C21—N2—Mn1 127.22 (15) C27—C26—C28 109.2 (2)
O1—C1—C14 121.37 (17) C27—C26—C25 112.2 (2)
O1—C1—C2 118.80 (18) C28—C26—C25 110.1 (2)
C14—C1—C2 119.83 (18) C27—C26—C29 108.1 (2)
C7—C2—C1 117.6 (2) C28—C26—C29 108.9 (2)
C7—C2—C3 122.53 (19) C25—C26—C29 108.4 (2)
C1—C2—C3 119.92 (19) C26—C27—H27A 109.5
C4—C3—C5 109.5 (2) C26—C27—H27B 109.5
C4—C3—C6 108.1 (2) H27A—C27—H27B 109.5
C5—C3—C6 106.4 (2) C26—C27—H27C 109.5
C4—C3—C2 109.9 (2) H27A—C27—H27C 109.5
C5—C3—C2 111.0 (2) H27B—C27—H27C 109.5
C6—C3—C2 111.8 (2) C26—C28—H28A 109.5
C3—C4—H4A 109.5 C26—C28—H28B 109.5
C3—C4—H4B 109.5 H28A—C28—H28B 109.5
H4A—C4—H4B 109.5 C26—C28—H28C 109.5
C3—C4—H4C 109.5 H28A—C28—H28C 109.5
H4A—C4—H4C 109.5 H28B—C28—H28C 109.5
H4B—C4—H4C 109.5 C26—C29—H29A 109.5
C3—C5—H5A 109.5 C26—C29—H29B 109.5
C3—C5—H5B 109.5 H29A—C29—H29B 109.5
H5A—C5—H5B 109.5 C26—C29—H29C 109.5
C3—C5—H5C 109.5 H29A—C29—H29C 109.5
H5A—C5—H5C 109.5 H29B—C29—H29C 109.5
H5B—C5—H5C 109.5 C31—C30—C25 124.75 (19)
C3—C6—H6A 109.5 C31—C30—H30 117.6
C3—C6—H6B 109.5 C25—C30—H30 117.6
H6A—C6—H6B 109.5 C30—C31—C36 116.89 (19)
C3—C6—H6C 109.5 C30—C31—C32 121.61 (17)
H6A—C6—H6C 109.5 C36—C31—C32 121.48 (18)
H6B—C6—H6C 109.5 C35—C32—C33 107.83 (18)
C8—C7—C2 123.54 (19) C35—C32—C34 109.6 (2)
C8—C7—H7 118.2 C33—C32—C34 107.51 (19)
C2—C7—H7 118.2 C35—C32—C31 109.09 (17)
C13—C8—C7 117.34 (18) C33—C32—C31 112.17 (18)
C13—C8—C9 119.4 (2) C34—C32—C31 110.61 (17)
C7—C8—C9 123.19 (19) C32—C33—H33A 109.5
C12—C9—C11 109.7 (3) C32—C33—H33B 109.5
C12—C9—C10 109.3 (2) H33A—C33—H33B 109.5
C11—C9—C10 107.0 (2) C32—C33—H33C 109.5
C12—C9—C8 110.81 (18) H33A—C33—H33C 109.5
C11—C9—C8 107.95 (18) H33B—C33—H33C 109.5
C10—C9—C8 112.0 (2) C32—C34—H34A 109.5
C9—C10—H10A 109.5 C32—C34—H34B 109.5
C9—C10—H10B 109.5 H34A—C34—H34B 109.5
H10A—C10—H10B 109.5 C32—C34—H34C 109.5
C9—C10—H10C 109.5 H34A—C34—H34C 109.5
H10A—C10—H10C 109.5 H34B—C34—H34C 109.5
H10B—C10—H10C 109.5 C32—C35—H35A 109.5
C9—C11—H11A 109.5 C32—C35—H35B 109.5
C9—C11—H11B 109.5 H35A—C35—H35B 109.5
H11A—C11—H11B 109.5 C32—C35—H35C 109.5
C9—C11—H11C 109.5 H35A—C35—H35C 109.5
H11A—C11—H11C 109.5 H35B—C35—H35C 109.5
H11B—C11—H11C 109.5 O2—C36—C23 118.68 (17)
C9—C12—H12A 109.5 O2—C36—C31 122.21 (18)
C9—C12—H12B 109.5 C23—C36—C31 119.10 (18)
H12A—C12—H12B 109.5 O4—C37—O3 124.5 (2)
C9—C12—H12C 109.5 O4—C37—C38 119.5 (2)
H12A—C12—H12C 109.5 O3—C37—C38 115.9 (2)
H12B—C12—H12C 109.5 C37—C38—H38A 109.5
C14—C13—C8 121.6 (2) C37—C38—H38B 109.5
C14—C13—H13 119.2 H38A—C38—H38B 109.5
C8—C13—H13 119.2 C37—C38—H38C 109.5
C13—C14—C1 120.08 (18) H38A—C38—H38C 109.5
C13—C14—C15 118.51 (18) H38B—C38—H38C 109.5
C1—C14—C15 121.34 (17) O6—C39—C40 114.5 (3)
C14—C15—N1 113.64 (15) O6—C39—H39A 108.6
C14—C15—H15A 108.8 C40—C39—H39A 108.6
N1—C15—H15A 108.8 O6—C39—H39B 108.6
C14—C15—H15B 108.8 C40—C39—H39B 108.6
N1—C15—H15B 108.8 H39A—C39—H39B 107.6
H15A—C15—H15B 107.7 C39—C40—H40A 109.5
N1—C16—C17 113.15 (16) C39—C40—H40B 109.5
N1—C16—H16A 108.9 H40A—C40—H40B 109.5
C17—C16—H16A 108.9 C39—C40—H40C 109.5
N1—C16—H16B 108.9 H40A—C40—H40C 109.5
C17—C16—H16B 108.9 H40B—C40—H40C 109.5
H16A—C16—H16B 107.8

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H41A···O6i 0.92 1.91 2.799 (2) 160
O6—H42···O4ii 0.91 1.81 2.723 (3) 171
O5—H41B···O4 0.93 1.79 2.677 (2) 160
C4—H4B···O1 0.98 2.36 2.991 (4) 122
C5—H5C···O1 0.98 2.28 2.929 (3) 123
C15—H15B···O5 0.99 2.54 3.202 (3) 124
C34—H34C···O2 0.98 2.45 3.102 (3) 123
C35—H35A···O2 0.98 2.32 3.010 (3) 126

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2284).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Chmura, A. J., Davidson, M. G., Jones, M. D., Lunn, M. D., Mahon, M. F., Johnson, A. F., Khunkamchoo, P., Roberts, S. L. & Wong, S. S. F. (2006). Macromolecules, 39, 7250–7257.
  3. Gorkum, R. van, Berding, J., Mills, A. M., Kooijman, H., Tooke, D. M., Spek, A. L., Mutikainen, I., Turpeinen, U., Reedijk, J. & Bouwman, E. (2008). Eur. J. Inorg. Chem. pp. 1487–1496.
  4. Higashi, T. (2000). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Kerton, F. M., Holloway, S., Power, A., Soper, R. G., Sheridan, K., Lynam, J. M., Whitwood, A. C. & Willans, C. E. (2008). Can. J. Chem.86, 435–443.
  6. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2005). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shimazaki, Y., Huth, S., Odani, A. & Yamauchi, O. (2000). Angew. Chem. Int. Ed.39, 1666–1669. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021288/pv2284sup1.cif

e-66-0m771-sup1.cif (29.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021288/pv2284Isup2.hkl

e-66-0m771-Isup2.hkl (420.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES