Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 16;66(Pt 7):m793. doi: 10.1107/S1600536810021872

(2-{[1,1-Bis(hy­droxy­meth­yl)-2-oxidoeth­yl]imino­meth­yl}-4-chloro­phenolato-κ3 O,N,O′)dibutyl­tin(IV)

See Mun Lee a, Hapipah Mohd Ali a, Kong Mun Lo a,*
PMCID: PMC3006995  PMID: 21587717

Abstract

In the title compound, [Sn(C4H9)2(C11H12BrNO4)], the Schiff base ligand chelates to the SnIV atom through the two deprotonated hy­droxy groups, as well as through the N atom, to confer an overall cis-C2SnNO2 trigonal-bipyramidal geometry at the SnIV atom [C—Sn—C = 129.92 (9)°]. The remaining methyl­enehy­droxy groups engage in O—H⋯O hydrogen bonding with the O atoms of adjacent mol­ecules, leading to infinite supra­molecular chains propagating in [001].

Related literature

For related structures, see Reisi et al. (2010); Ng (2008).graphic file with name e-66-0m793-scheme1.jpg

Experimental

Crystal data

  • [Sn(C4H9)2(C11H12BrNO4)]

  • M r = 535.04

  • Monoclinic, Inline graphic

  • a = 18.8326 (9) Å

  • b = 13.3811 (7) Å

  • c = 16.5768 (8) Å

  • β = 91.385 (3)°

  • V = 4176.1 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 100 K

  • 0.40 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.365, T max = 0.786

  • 19535 measured reflections

  • 4785 independent reflections

  • 4229 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.052

  • S = 1.02

  • 4785 reflections

  • 239 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021872/xu2772sup1.cif

e-66-0m793-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021872/xu2772Isup2.hkl

e-66-0m793-Isup2.hkl (234.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn1—N1 2.2108 (17)
Sn1—O1 2.1203 (15)
Sn1—O2 2.1049 (14)
Sn1—C12 2.139 (2)
Sn1—C16 2.129 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.84 1.77 2.608 (2) 174
O4—H4⋯O3ii 0.84 1.93 2.733 (2) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the University of Malaya (grant Nos. PS342/2009 C and RG020/09AFR) for supporting this study.

supplementary crystallographic information

Comment

The Schiff base derived from the condensation of 5-bromosalicylaldehyde and tris(hydroxymethyl)methylamine is deprotonated with respect to the phenoxy hydrogen atom and one of the methylenehydroxyl hydrogen atom. The ligand coordinates to the dibutyltin fragment through this doubly deprotonated oxygen atoms and the imine nitrogen (Fig. 1).

The tin atom is in a cis-trigonal bipyramidal geometry with a C—Sn—C angle of 129.92 (9)°. The two deprotonated oxygen atoms occupied the axial sites with a O—Sn—O angle of 155.60 (6)°, indicating a distortion in the trigonal bipyramidal geometry at the Sn atom. Adjacent molecules are linked by hydrogen bonds to form an infinite polymeric chain (Fig. 2).

Experimental

The Schiff base, 4-bromo-2-tris[(hydroxymethyl)methylimino]phenol was prepared from tris(hydroxymethyl)aminomethane and 5-bromosalicylaldehyde in absolute ethanol. The compound (0.30 g, 0.1 mmol) and dibutyltin oxide (0.25 g, 1.0 mmol) were heated in 50 ml of toluene in a Dean-Stark apparatus for 8 h. The solution was left for crystallizaton for a week during which yellow crystals were obtained.

Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.95 to 0.98 Å) and were treated as riding on their parent carbon atoms, with Uiso(H) set to 1.2–1.5 times Ueq(C). The hydroxy-H was refined with a restraint of 0.84 ± 0.01 Å, Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (2-{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl}-4-chlorophenolato-κ3N,O,O')dibutyltin(IV) showing 70% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing of the unit cell showing the hydrogen bonding interactions in the molecule.

Crystal data

[Sn(C4H9)2(C11H12BrNO4)] F(000) = 2144
Mr = 535.04 Dx = 1.702 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 7855 reflections
a = 18.8326 (9) Å θ = 2.2–30.4°
b = 13.3811 (7) Å µ = 3.16 mm1
c = 16.5768 (8) Å T = 100 K
β = 91.385 (3)° Needle, yellow
V = 4176.1 (4) Å3 0.40 × 0.10 × 0.08 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer 4785 independent reflections
Radiation source: fine-focus sealed tube 4229 reflections with I > 2σ(I)
graphite Rint = 0.032
ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −24→24
Tmin = 0.365, Tmax = 0.786 k = −17→17
19535 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0231P)2 + 4.784P] where P = (Fo2 + 2Fc2)/3
4785 reflections (Δ/σ)max = 0.001
239 parameters Δρmax = 0.65 e Å3
2 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.325854 (7) 0.128538 (10) 0.254101 (8) 0.01133 (5)
Br1 0.047899 (12) 0.180095 (17) −0.072373 (14) 0.02090 (6)
N1 0.33348 (9) 0.06301 (13) 0.13219 (10) 0.0117 (3)
O1 0.27217 (8) 0.24249 (11) 0.18796 (9) 0.0154 (3)
O2 0.39697 (8) 0.00855 (11) 0.27086 (8) 0.0141 (3)
O3 0.51910 (7) −0.01628 (11) 0.10327 (9) 0.0139 (3)
H3 0.5442 −0.0111 0.1456 0.021*
O4 0.37130 (8) −0.06319 (12) −0.01932 (8) 0.0151 (3)
H4 0.4107 −0.0416 −0.0344 0.023*
C1 0.22983 (11) 0.14839 (15) 0.07343 (12) 0.0119 (4)
C2 0.22471 (11) 0.22806 (16) 0.12949 (12) 0.0132 (4)
C3 0.16695 (12) 0.29422 (16) 0.12036 (12) 0.0153 (4)
H3A 0.1638 0.3502 0.1554 0.018*
C4 0.11478 (11) 0.27967 (17) 0.06175 (13) 0.0155 (4)
H4A 0.0751 0.3234 0.0581 0.019*
C5 0.12066 (11) 0.19991 (16) 0.00753 (12) 0.0148 (4)
C6 0.17791 (11) 0.13705 (16) 0.01159 (13) 0.0144 (4)
H6 0.1826 0.0856 −0.0274 0.017*
C7 0.28804 (11) 0.07801 (16) 0.07408 (12) 0.0125 (4)
H7 0.2933 0.0388 0.0268 0.015*
C8 0.39114 (11) −0.01213 (15) 0.12512 (12) 0.0116 (4)
C9 0.39651 (11) −0.06281 (16) 0.20865 (12) 0.0130 (4)
H9A 0.3557 −0.1085 0.2150 0.016*
H9B 0.4406 −0.1030 0.2124 0.016*
C10 0.45890 (10) 0.04737 (15) 0.10849 (12) 0.0117 (4)
H10A 0.4525 0.0847 0.0573 0.014*
H10B 0.4672 0.0966 0.1523 0.014*
C11 0.37745 (11) −0.09448 (16) 0.06228 (12) 0.0131 (4)
H11A 0.4167 −0.1436 0.0668 0.016*
H11B 0.3331 −0.1296 0.0762 0.016*
C12 0.23527 (12) 0.06420 (17) 0.30964 (14) 0.0191 (5)
H12A 0.2208 0.0044 0.2781 0.023*
H12B 0.2500 0.0410 0.3642 0.023*
C13 0.17028 (12) 0.13118 (19) 0.31788 (16) 0.0259 (5)
H13A 0.1816 0.1846 0.3574 0.031*
H13B 0.1597 0.1635 0.2652 0.031*
C14 0.10488 (13) 0.07612 (19) 0.34454 (17) 0.0272 (5)
H14A 0.1168 0.0397 0.3951 0.033*
H14B 0.0918 0.0258 0.3030 0.033*
C15 0.04070 (14) 0.1421 (2) 0.35880 (18) 0.0350 (7)
H15A 0.0495 0.1833 0.4069 0.052*
H15B −0.0012 0.1001 0.3669 0.052*
H15C 0.0323 0.1854 0.3119 0.052*
C16 0.40219 (11) 0.23185 (17) 0.30125 (13) 0.0164 (4)
H16A 0.4161 0.2102 0.3565 0.020*
H16B 0.4451 0.2276 0.2680 0.020*
C17 0.37945 (12) 0.34137 (17) 0.30495 (14) 0.0180 (5)
H17A 0.4205 0.3818 0.3243 0.022*
H17B 0.3667 0.3641 0.2496 0.022*
C18 0.31701 (12) 0.36167 (17) 0.35918 (14) 0.0200 (5)
H18A 0.3050 0.4336 0.3560 0.024*
H18B 0.2753 0.3237 0.3385 0.024*
C19 0.33061 (15) 0.3340 (2) 0.44694 (15) 0.0344 (7)
H19A 0.3368 0.2615 0.4515 0.052*
H19B 0.2901 0.3549 0.4789 0.052*
H19C 0.3737 0.3677 0.4671 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.00935 (7) 0.01444 (8) 0.01012 (7) 0.00111 (5) −0.00151 (5) −0.00132 (5)
Br1 0.01670 (11) 0.02112 (12) 0.02432 (12) 0.00431 (9) −0.01116 (9) −0.00292 (9)
N1 0.0092 (8) 0.0119 (8) 0.0140 (8) 0.0008 (7) 0.0000 (6) 0.0013 (7)
O1 0.0171 (8) 0.0148 (7) 0.0139 (7) 0.0022 (6) −0.0048 (6) −0.0024 (6)
O2 0.0146 (7) 0.0160 (7) 0.0116 (7) 0.0034 (6) −0.0035 (6) −0.0013 (6)
O3 0.0092 (7) 0.0196 (8) 0.0127 (7) 0.0046 (6) −0.0028 (6) −0.0026 (6)
O4 0.0133 (7) 0.0214 (8) 0.0107 (7) −0.0014 (6) 0.0005 (6) −0.0005 (6)
C1 0.0097 (9) 0.0143 (10) 0.0117 (10) 0.0006 (8) −0.0013 (8) 0.0013 (8)
C2 0.0128 (10) 0.0164 (10) 0.0105 (9) −0.0011 (8) 0.0001 (8) 0.0010 (8)
C3 0.0185 (11) 0.0149 (10) 0.0126 (10) 0.0024 (9) 0.0015 (8) −0.0015 (8)
C4 0.0131 (10) 0.0190 (11) 0.0144 (10) 0.0034 (9) 0.0003 (8) 0.0031 (8)
C5 0.0117 (10) 0.0188 (11) 0.0138 (10) −0.0011 (9) −0.0042 (8) 0.0028 (8)
C6 0.0140 (10) 0.0154 (10) 0.0136 (10) 0.0012 (8) −0.0023 (8) −0.0004 (8)
C7 0.0119 (10) 0.0128 (10) 0.0129 (10) −0.0002 (8) 0.0018 (8) 0.0001 (8)
C8 0.0096 (9) 0.0127 (10) 0.0124 (10) 0.0032 (8) −0.0003 (7) 0.0003 (8)
C9 0.0120 (10) 0.0141 (10) 0.0128 (10) 0.0027 (8) −0.0009 (8) 0.0001 (8)
C10 0.0095 (9) 0.0140 (10) 0.0114 (10) 0.0009 (8) −0.0010 (7) −0.0002 (8)
C11 0.0110 (9) 0.0144 (10) 0.0138 (10) −0.0006 (8) −0.0008 (8) −0.0009 (8)
C12 0.0155 (11) 0.0192 (11) 0.0227 (12) −0.0013 (9) 0.0043 (9) −0.0017 (9)
C13 0.0166 (12) 0.0316 (14) 0.0298 (13) 0.0049 (10) 0.0043 (10) 0.0099 (11)
C14 0.0196 (12) 0.0264 (13) 0.0359 (14) −0.0035 (11) 0.0077 (10) −0.0110 (11)
C15 0.0179 (13) 0.0498 (18) 0.0376 (16) 0.0035 (12) 0.0062 (11) 0.0078 (13)
C16 0.0115 (10) 0.0193 (11) 0.0183 (11) 0.0024 (9) −0.0016 (8) −0.0034 (9)
C17 0.0177 (11) 0.0174 (11) 0.0188 (11) −0.0003 (9) −0.0035 (9) −0.0014 (9)
C18 0.0201 (11) 0.0197 (11) 0.0199 (11) 0.0051 (9) −0.0042 (9) −0.0049 (9)
C19 0.0313 (14) 0.0536 (18) 0.0184 (12) 0.0169 (14) 0.0004 (11) 0.0000 (12)

Geometric parameters (Å, °)

Sn1—N1 2.2108 (17) C9—H9B 0.9900
Sn1—O1 2.1203 (15) C10—H10A 0.9900
Sn1—O2 2.1049 (14) C10—H10B 0.9900
Sn1—C12 2.139 (2) C11—H11A 0.9900
Sn1—C16 2.129 (2) C11—H11B 0.9900
Br1—C5 1.901 (2) C12—C13 1.526 (3)
N1—C7 1.289 (3) C12—H12A 0.9900
N1—C8 1.487 (3) C12—H12B 0.9900
O1—C2 1.317 (2) C13—C14 1.510 (3)
O2—C9 1.405 (2) C13—H13A 0.9900
O3—C10 1.422 (2) C13—H13B 0.9900
O3—H3 0.8400 C14—C15 1.520 (3)
O4—C11 1.418 (2) C14—H14A 0.9900
O4—H4 0.8400 C14—H14B 0.9900
C1—C6 1.408 (3) C15—H15A 0.9800
C1—C2 1.419 (3) C15—H15B 0.9800
C1—C7 1.445 (3) C15—H15C 0.9800
C2—C3 1.408 (3) C16—C17 1.528 (3)
C3—C4 1.379 (3) C16—H16A 0.9900
C3—H3A 0.9500 C16—H16B 0.9900
C4—C5 1.401 (3) C17—C18 1.522 (3)
C4—H4A 0.9500 C17—H17A 0.9900
C5—C6 1.368 (3) C17—H17B 0.9900
C6—H6 0.9500 C18—C19 1.517 (3)
C7—H7 0.9500 C18—H18A 0.9900
C8—C11 1.534 (3) C18—H18B 0.9900
C8—C10 1.535 (3) C19—H19A 0.9800
C8—C9 1.543 (3) C19—H19B 0.9800
C9—H9A 0.9900 C19—H19C 0.9800
O2—Sn1—O1 155.60 (6) H10A—C10—H10B 108.0
O2—Sn1—C16 91.43 (7) O4—C11—C8 116.38 (17)
O1—Sn1—C16 91.84 (7) O4—C11—H11A 108.2
O2—Sn1—C12 98.49 (7) C8—C11—H11A 108.2
O1—Sn1—C12 97.86 (8) O4—C11—H11B 108.2
C16—Sn1—C12 129.92 (9) C8—C11—H11B 108.2
O2—Sn1—N1 76.29 (6) H11A—C11—H11B 107.3
O1—Sn1—N1 81.56 (6) C13—C12—Sn1 116.87 (16)
C16—Sn1—N1 122.33 (7) C13—C12—H12A 108.1
C12—Sn1—N1 107.69 (8) Sn1—C12—H12A 108.1
C7—N1—C8 121.31 (18) C13—C12—H12B 108.1
C7—N1—Sn1 124.39 (14) Sn1—C12—H12B 108.1
C8—N1—Sn1 113.83 (12) H12A—C12—H12B 107.3
C2—O1—Sn1 125.58 (13) C14—C13—C12 113.7 (2)
C9—O2—Sn1 115.39 (12) C14—C13—H13A 108.8
C10—O3—H3 109.5 C12—C13—H13A 108.8
C11—O4—H4 109.5 C14—C13—H13B 108.8
C6—C1—C2 120.06 (19) C12—C13—H13B 108.8
C6—C1—C7 116.66 (19) H13A—C13—H13B 107.7
C2—C1—C7 123.25 (19) C13—C14—C15 114.8 (2)
O1—C2—C3 119.74 (19) C13—C14—H14A 108.6
O1—C2—C1 122.45 (19) C15—C14—H14A 108.6
C3—C2—C1 117.81 (19) C13—C14—H14B 108.6
C4—C3—C2 121.5 (2) C15—C14—H14B 108.6
C4—C3—H3A 119.2 H14A—C14—H14B 107.5
C2—C3—H3A 119.2 C14—C15—H15A 109.5
C3—C4—C5 119.6 (2) C14—C15—H15B 109.5
C3—C4—H4A 120.2 H15A—C15—H15B 109.5
C5—C4—H4A 120.2 C14—C15—H15C 109.5
C6—C5—C4 120.8 (2) H15A—C15—H15C 109.5
C6—C5—Br1 120.16 (16) H15B—C15—H15C 109.5
C4—C5—Br1 119.09 (16) C17—C16—Sn1 116.73 (14)
C5—C6—C1 120.2 (2) C17—C16—H16A 108.1
C5—C6—H6 119.9 Sn1—C16—H16A 108.1
C1—C6—H6 119.9 C17—C16—H16B 108.1
N1—C7—C1 126.66 (19) Sn1—C16—H16B 108.1
N1—C7—H7 116.7 H16A—C16—H16B 107.3
C1—C7—H7 116.7 C18—C17—C16 114.59 (19)
N1—C8—C11 115.35 (16) C18—C17—H17A 108.6
N1—C8—C10 105.98 (16) C16—C17—H17A 108.6
C11—C8—C10 112.19 (16) C18—C17—H17B 108.6
N1—C8—C9 104.99 (15) C16—C17—H17B 108.6
C11—C8—C9 107.46 (17) H17A—C17—H17B 107.6
C10—C8—C9 110.64 (16) C19—C18—C17 114.1 (2)
O2—C9—C8 111.04 (17) C19—C18—H18A 108.7
O2—C9—H9A 109.4 C17—C18—H18A 108.7
C8—C9—H9A 109.4 C19—C18—H18B 108.7
O2—C9—H9B 109.4 C17—C18—H18B 108.7
C8—C9—H9B 109.4 H18A—C18—H18B 107.6
H9A—C9—H9B 108.0 C18—C19—H19A 109.5
O3—C10—C8 111.57 (16) C18—C19—H19B 109.5
O3—C10—H10A 109.3 H19A—C19—H19B 109.5
C8—C10—H10A 109.3 C18—C19—H19C 109.5
O3—C10—H10B 109.3 H19A—C19—H19C 109.5
C8—C10—H10B 109.3 H19B—C19—H19C 109.5
O2—Sn1—N1—C7 161.51 (18) Sn1—N1—C7—C1 8.4 (3)
O1—Sn1—N1—C7 −28.79 (17) C6—C1—C7—N1 −166.4 (2)
C16—Sn1—N1—C7 −115.61 (17) C2—C1—C7—N1 15.8 (3)
C12—Sn1—N1—C7 66.82 (18) C7—N1—C8—C11 −22.0 (3)
O2—Sn1—N1—C8 −10.66 (12) Sn1—N1—C8—C11 150.45 (14)
O1—Sn1—N1—C8 159.04 (14) C7—N1—C8—C10 102.8 (2)
C16—Sn1—N1—C8 72.22 (15) Sn1—N1—C8—C10 −84.77 (15)
C12—Sn1—N1—C8 −105.35 (14) C7—N1—C8—C9 −140.06 (19)
O2—Sn1—O1—C2 67.9 (2) Sn1—N1—C8—C9 32.38 (18)
C16—Sn1—O1—C2 165.50 (16) Sn1—O2—C9—C8 41.10 (19)
C12—Sn1—O1—C2 −63.76 (17) N1—C8—C9—O2 −46.7 (2)
N1—Sn1—O1—C2 43.07 (16) C11—C8—C9—O2 −169.96 (16)
O1—Sn1—O2—C9 −42.4 (2) C10—C8—C9—O2 67.3 (2)
C16—Sn1—O2—C9 −140.00 (14) N1—C8—C10—O3 177.90 (15)
C12—Sn1—O2—C9 89.25 (14) C11—C8—C10—O3 −55.4 (2)
N1—Sn1—O2—C9 −17.01 (13) C9—C8—C10—O3 64.6 (2)
Sn1—O1—C2—C3 144.75 (16) N1—C8—C11—O4 63.8 (2)
Sn1—O1—C2—C1 −36.3 (3) C10—C8—C11—O4 −57.7 (2)
C6—C1—C2—O1 −179.37 (19) C9—C8—C11—O4 −179.53 (16)
C7—C1—C2—O1 −1.7 (3) O2—Sn1—C12—C13 174.84 (17)
C6—C1—C2—C3 −0.4 (3) O1—Sn1—C12—C13 −23.33 (19)
C7—C1—C2—C3 177.28 (19) C16—Sn1—C12—C13 75.8 (2)
O1—C2—C3—C4 −177.65 (19) N1—Sn1—C12—C13 −106.93 (18)
C1—C2—C3—C4 3.4 (3) Sn1—C12—C13—C14 170.31 (17)
C2—C3—C4—C5 −2.9 (3) C12—C13—C14—C15 176.0 (2)
C3—C4—C5—C6 −0.7 (3) O2—Sn1—C16—C17 −179.92 (16)
C3—C4—C5—Br1 179.46 (16) O1—Sn1—C16—C17 24.26 (16)
C4—C5—C6—C1 3.6 (3) C12—Sn1—C16—C17 −77.59 (19)
Br1—C5—C6—C1 −176.54 (16) N1—Sn1—C16—C17 105.44 (16)
C2—C1—C6—C5 −3.0 (3) Sn1—C16—C17—C18 62.2 (2)
C7—C1—C6—C5 179.12 (19) C16—C17—C18—C19 60.7 (3)
C8—N1—C7—C1 179.97 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2i 0.84 1.77 2.608 (2) 174
O4—H4···O3ii 0.84 1.93 2.733 (2) 160

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2772).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ng, S. W. (2008). Acta Cryst. E64, o2455. [DOI] [PMC free article] [PubMed]
  4. Reisi, R., Misran, M., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m482. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021872/xu2772sup1.cif

e-66-0m793-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021872/xu2772Isup2.hkl

e-66-0m793-Isup2.hkl (234.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES