Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 16;66(Pt 7):o1674. doi: 10.1107/S1600536810021999

(1-Phenyl-1H-1,2,3-triazol-4-yl)methyl pyridine-3-carboxyl­ate

Zakirjon Karimov a,*, Ibrakhim Abdugafurov b, Samat Talipov c, Bakhodir Tashkhodjaev d
PMCID: PMC3007003  PMID: 21587899

Abstract

In the title compound, C15H12N4O2, the dihedral angle between the planes of the nicotino­yloxy fragment and triazole ring is 88.61 (5)°. The dihedral angle between the planes of triazole and benzene rings is 16.54 (11)°. The crystal structure is stabilized by inter­molecular C—H⋯N, C—H⋯O and C—H⋯π(triazole) hydrogen bonds and aromatic π–π stacking inter­actions between the benzene and triazole rings [centroid–centroid distance = 3.895 (1) Å]

Related literature

For the synthesis of 1,2,3-triazole derivatives, see: Berestovitskaya et al. (2007); Piterskaya et al. (1996a ,b ). For their physiological activity, see: Contreras et al. (1978). For related structures, see: Berestovitskaya et al. (2007); Monkowius et al. (2007). For bond-length data, see: Allen et al. (1987). graphic file with name e-66-o1674-scheme1.jpg

Experimental

Crystal data

  • C15H12N4O2

  • M r = 280.29

  • Monoclinic, Inline graphic

  • a = 5.5178 (5) Å

  • b = 23.650 (2) Å

  • c = 10.287 (2) Å

  • β = 91.841 (14)°

  • V = 1341.8 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 293 K

  • 0.70 × 0.45 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.674, T max = 1.000

  • 4791 measured reflections

  • 2460 independent reflections

  • 1877 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.124

  • S = 1.04

  • 2460 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021999/kp2262sup1.cif

e-66-o1674-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021999/kp2262Isup2.hkl

e-66-o1674-Isup2.hkl (120.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the triazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N1i 0.93 2.64 3.550 (3) 165
C2—H2⋯O1ii 0.93 2.71 3.464 (2) 139
C15—H15⋯O1iii 0.93 2.68 3.559 (2) 158
C7—H7a⋯Cg1iv 0.97 2.92 3.313 (2) 106

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Tashkent Institute of Irrigation and Melioration is thanked for support.

supplementary crystallographic information

Comment

Triazole derivatives possess different biological activities (Contreras et al. 1978). The title compound was synthesized with purpose of finding of a potential biological active compound.

The asymmetric unit contains one molecule of 1-phenyl-4-(nicotinoyloxymethyl)-1,2,3-triazole (Fig. 1). In the molecule nicotinoyloxy, phenyl groups and triazole system are planar, with r.m.s. deviations of 0.0075, 0.0048 and 0.0028 Å, respectively. Nicotinoyloxy fragment arranged nearly perpendicular to triazole ring. The angle between the planes of the nicotinoyloxy fragment and triazole ring is 88.61 (5)°. The angle between the planes of triazole and benzene rings is 16.54 (11)°. The observed structure is stabilized by C—H···N, C—H···O and C—H···π (triazole) type hydrogen bonds (Table 1) and aromatic π–π stacking interactions. A centrosymmetric π–π stacking interactions are observed between triazole group and benzene group of molecules at x,y,z and 1 - x, -y, 2 - z where the ring-centroid separation is 3.895 (1) Å, triazole centroid distance to benzene plane is 3.429 (1) Å with ring offset of 1.847 (1) Å (Fig. 2). The bond distances and angles in molecule are in normal ranges (Allen et al., 1987).

Experimental

Mixture of 3-(nicotinoyloxy)-1-propyne (1.61 g, 0,01 mole) and fresh prepared phenylazide (1.310 g, 0,011 mole) in 30 ml toluen was heated with a backflow condenser for 6 h. Then it was cooled and precipitate were isolated by decantation. Obtained crystals were washed with ether and re-crystallized from toluen. It was obtained 78.3% yeild (2.19 g) of title compound, m.p. 96–97° C, Rf =0.53 (ether-hexane 9:1). Colorless crystals suitable for X-ray analysis were obtained from acetone by slow evaporation.

Refinement

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and were refined with Uiso(H) =1.2Ueq(C)]. All other non-H atoms were refined anisotropically.

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot at the 50% probability level for the non-H atoms.

Fig. 2.

Fig. 2.

Part of the crystal structure showing a π–π stacking interactions observed between triazole and triazole rings.

Crystal data

C15H12N4O2 F(000) = 584
Mr = 280.29 Dx = 1.388 Mg m3
Monoclinic, P21/n Melting point: 370(2) K
Hall symbol: -P 2yn Cu Kα radiation, λ = 1.5418 Å
a = 5.5178 (5) Å Cell parameters from 2409 reflections
b = 23.650 (2) Å θ = 3.6–70.6°
c = 10.287 (2) Å µ = 0.79 mm1
β = 91.841 (14)° T = 293 K
V = 1341.8 (3) Å3 Prism, colourless
Z = 4 0.70 × 0.45 × 0.10 mm

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer 2460 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1877 reflections with I > 2σ(I)
graphite Rint = 0.026
Detector resolution: 10.2576 pixels mm-1 θmax = 70.8°, θmin = 3.7°
ω scans h = −6→5
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −22→28
Tmin = 0.674, Tmax = 1.000 l = −12→7
4791 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.039P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.009
2460 reflections Δρmax = 0.18 e Å3
191 parameters Δρmin = −0.13 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0116 (12)

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.40 (release 27-04-2009 CrysAlis171 .NET) (compiled Apr 27 2009,10:20:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.0509 (3) 0.12524 (6) 0.39435 (11) 0.0714 (4)
O2 0.8540 (2) 0.11948 (5) 0.58047 (11) 0.0523 (3)
N1 1.4934 (3) 0.25199 (7) 0.54437 (16) 0.0742 (5)
N2 0.3515 (3) 0.05484 (6) 0.64902 (15) 0.0623 (4)
N3 0.2755 (2) 0.02085 (7) 0.73956 (15) 0.0594 (4)
N4 0.4631 (2) −0.01361 (5) 0.77328 (12) 0.0462 (3)
C1 1.3474 (4) 0.21113 (8) 0.49855 (17) 0.0633 (5)
H1 1.3699 0.1984 0.4143 0.076*
C2 1.4557 (4) 0.26924 (9) 0.66483 (19) 0.0704 (5)
H2 1.5531 0.2981 0.6987 0.084*
C3 1.2820 (4) 0.24710 (8) 0.74223 (17) 0.0666 (5)
H3 1.2648 0.2603 0.8265 0.080*
C4 1.1335 (3) 0.20495 (8) 0.69328 (16) 0.0582 (5)
H4 1.0141 0.1892 0.7437 0.070*
C5 1.1658 (3) 0.18666 (7) 0.56780 (15) 0.0485 (4)
C6 1.0211 (3) 0.14094 (7) 0.50420 (15) 0.0503 (4)
C7 0.7195 (3) 0.07246 (8) 0.52359 (16) 0.0600 (5)
H7A 0.8304 0.0464 0.4836 0.072*
H7B 0.6066 0.0863 0.4567 0.072*
C8 0.5854 (3) 0.04295 (7) 0.62530 (15) 0.0505 (4)
C9 0.6565 (3) −0.00074 (7) 0.70339 (15) 0.0498 (4)
H9 0.8078 −0.0181 0.7075 0.060*
C10 0.4351 (3) −0.05578 (7) 0.87124 (15) 0.0462 (4)
C11 0.2462 (3) −0.05189 (8) 0.95377 (18) 0.0613 (5)
H11 0.1349 −0.0225 0.9442 0.074*
C12 0.2202 (3) −0.09122 (9) 1.05070 (19) 0.0679 (5)
H12 0.0903 −0.0888 1.1059 0.082*
C13 0.3853 (4) −0.13394 (9) 1.0659 (2) 0.0698 (5)
H13 0.3697 −0.1603 1.1323 0.084*
C14 0.5740 (4) −0.13789 (10) 0.9831 (2) 0.0789 (6)
H14 0.6860 −0.1671 0.9934 0.095*
C15 0.5996 (3) −0.09893 (9) 0.88416 (19) 0.0671 (5)
H15 0.7266 −0.1020 0.8273 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0949 (10) 0.0714 (9) 0.0485 (7) −0.0203 (7) 0.0127 (6) −0.0026 (6)
O2 0.0533 (6) 0.0509 (7) 0.0531 (6) −0.0076 (5) 0.0077 (5) −0.0050 (5)
N1 0.0808 (11) 0.0768 (11) 0.0660 (10) −0.0296 (9) 0.0194 (8) −0.0046 (8)
N2 0.0544 (8) 0.0561 (9) 0.0766 (10) 0.0028 (7) 0.0042 (7) 0.0052 (8)
N3 0.0433 (7) 0.0591 (9) 0.0761 (10) 0.0071 (7) 0.0071 (7) 0.0038 (8)
N4 0.0375 (6) 0.0472 (7) 0.0540 (7) 0.0014 (6) 0.0038 (5) −0.0059 (6)
C1 0.0727 (11) 0.0645 (11) 0.0532 (10) −0.0148 (10) 0.0140 (9) −0.0010 (8)
C2 0.0777 (13) 0.0669 (12) 0.0670 (11) −0.0241 (10) 0.0087 (10) −0.0064 (10)
C3 0.0748 (12) 0.0681 (12) 0.0577 (11) −0.0128 (10) 0.0123 (9) −0.0138 (9)
C4 0.0587 (10) 0.0604 (11) 0.0565 (10) −0.0068 (8) 0.0168 (8) −0.0006 (8)
C5 0.0505 (8) 0.0460 (9) 0.0493 (8) 0.0009 (7) 0.0054 (7) 0.0033 (7)
C6 0.0565 (9) 0.0480 (9) 0.0465 (9) 0.0006 (8) 0.0057 (7) 0.0053 (7)
C7 0.0680 (11) 0.0559 (10) 0.0562 (10) −0.0140 (9) 0.0022 (8) −0.0067 (8)
C8 0.0489 (8) 0.0488 (9) 0.0538 (9) −0.0055 (7) 0.0013 (7) −0.0095 (7)
C9 0.0386 (7) 0.0567 (10) 0.0543 (9) 0.0003 (7) 0.0054 (7) −0.0045 (8)
C10 0.0418 (7) 0.0460 (8) 0.0511 (8) −0.0025 (7) 0.0053 (6) −0.0076 (7)
C11 0.0521 (9) 0.0629 (11) 0.0699 (11) 0.0067 (8) 0.0157 (8) −0.0027 (9)
C12 0.0606 (10) 0.0772 (13) 0.0673 (12) −0.0039 (10) 0.0221 (9) −0.0022 (10)
C13 0.0723 (12) 0.0686 (13) 0.0693 (12) −0.0005 (10) 0.0130 (10) 0.0088 (10)
C14 0.0784 (13) 0.0700 (13) 0.0899 (15) 0.0212 (11) 0.0255 (11) 0.0180 (11)
C15 0.0612 (10) 0.0679 (12) 0.0738 (12) 0.0135 (10) 0.0261 (9) 0.0072 (10)

Geometric parameters (Å, °)

O1—C6 1.2059 (19) C5—C6 1.484 (2)
O2—C6 1.3301 (19) C7—C8 1.476 (2)
O2—C7 1.450 (2) C7—H7A 0.9700
N1—C2 1.327 (2) C7—H7B 0.9700
N1—C1 1.334 (2) C8—C9 1.359 (2)
N2—N3 1.309 (2) C9—H9 0.9300
N2—C8 1.351 (2) C10—C11 1.369 (2)
N3—N4 1.3536 (18) C10—C15 1.369 (2)
N4—C9 1.3409 (19) C11—C12 1.375 (3)
N4—C10 1.430 (2) C11—H11 0.9300
C1—C5 1.376 (2) C12—C13 1.366 (3)
C1—H1 0.9300 C12—H12 0.9300
C2—C3 1.369 (3) C13—C14 1.369 (3)
C2—H2 0.9300 C13—H13 0.9300
C3—C4 1.375 (2) C14—C15 1.383 (3)
C3—H3 0.9300 C14—H14 0.9300
C4—C5 1.378 (2) C15—H15 0.9300
C4—H4 0.9300
C6—O2—C7 114.22 (13) O2—C7—H7B 109.7
C2—N1—C1 116.19 (16) C8—C7—H7B 109.7
N3—N2—C8 109.28 (14) H7A—C7—H7B 108.2
N2—N3—N4 107.01 (13) N2—C8—C9 108.11 (15)
C9—N4—N3 109.94 (14) N2—C8—C7 122.22 (16)
C9—N4—C10 129.94 (13) C9—C8—C7 129.55 (16)
N3—N4—C10 120.13 (13) N4—C9—C8 105.66 (14)
N1—C1—C5 124.29 (17) N4—C9—H9 127.2
N1—C1—H1 117.9 C8—C9—H9 127.2
C5—C1—H1 117.9 C11—C10—C15 120.38 (17)
N1—C2—C3 123.98 (18) C11—C10—N4 119.46 (15)
N1—C2—H2 118.0 C15—C10—N4 120.15 (15)
C3—C2—H2 118.0 C10—C11—C12 120.25 (17)
C2—C3—C4 118.94 (17) C10—C11—H11 119.9
C2—C3—H3 120.5 C12—C11—H11 119.9
C4—C3—H3 120.5 C13—C12—C11 119.91 (18)
C3—C4—C5 118.49 (16) C13—C12—H12 120.0
C3—C4—H4 120.8 C11—C12—H12 120.0
C5—C4—H4 120.8 C12—C13—C14 119.8 (2)
C1—C5—C4 118.09 (16) C12—C13—H13 120.1
C1—C5—C6 117.97 (15) C14—C13—H13 120.1
C4—C5—C6 123.91 (15) C13—C14—C15 120.7 (2)
O1—C6—O2 123.60 (16) C13—C14—H14 119.7
O1—C6—C5 123.36 (16) C15—C14—H14 119.7
O2—C6—C5 113.04 (14) C10—C15—C14 119.00 (17)
O2—C7—C8 109.78 (13) C10—C15—H15 120.5
O2—C7—H7A 109.7 C14—C15—H15 120.5
C8—C7—H7A 109.7
C8—N2—N3—N4 −0.57 (18) N3—N2—C8—C7 177.18 (14)
N2—N3—N4—C9 0.18 (18) O2—C7—C8—N2 94.82 (18)
N2—N3—N4—C10 179.94 (13) O2—C7—C8—C9 −89.6 (2)
C2—N1—C1—C5 −0.2 (3) N3—N4—C9—C8 0.28 (18)
C1—N1—C2—C3 1.1 (3) C10—N4—C9—C8 −179.45 (15)
N1—C2—C3—C4 −1.0 (3) N2—C8—C9—N4 −0.62 (17)
C2—C3—C4—C5 0.0 (3) C7—C8—C9—N4 −176.70 (15)
N1—C1—C5—C4 −0.8 (3) C9—N4—C10—C11 162.57 (16)
N1—C1—C5—C6 −178.98 (18) N3—N4—C10—C11 −17.1 (2)
C3—C4—C5—C1 0.8 (3) C9—N4—C10—C15 −15.9 (3)
C3—C4—C5—C6 178.92 (16) N3—N4—C10—C15 164.39 (16)
C7—O2—C6—O1 4.0 (2) C15—C10—C11—C12 0.2 (3)
C7—O2—C6—C5 −176.54 (14) N4—C10—C11—C12 −178.28 (16)
C1—C5—C6—O1 −1.8 (3) C10—C11—C12—C13 0.9 (3)
C4—C5—C6—O1 −179.94 (17) C11—C12—C13—C14 −1.0 (3)
C1—C5—C6—O2 178.69 (15) C12—C13—C14—C15 0.2 (3)
C4—C5—C6—O2 0.6 (2) C11—C10—C15—C14 −1.1 (3)
C6—O2—C7—C8 165.90 (14) N4—C10—C15—C14 177.40 (17)
N3—N2—C8—C9 0.76 (18) C13—C14—C15—C10 0.9 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the triazole ring.
D—H···A D—H H···A D···A D—H···A
C14—H14···N1i 0.93 2.64 3.550 (3) 165
C2—H2···O1ii 0.93 2.71 3.464 (2) 139
C15—H15···O1iii 0.93 2.68 3.559 (2) 158
C7—H7a···Cg1iv 0.97 2.917 3.313 (2) 106

Symmetry codes: (i) −x+5/2, y−1/2, −z+3/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+2, −y, −z+1; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2262).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Berestovitskaya, V. M., Anisimova, N. A., Kataeva, O. N., Makarova, N. G. & Berkova, G. A. (2007). Russ. J. Gen. Chem.77, 1567–1575.
  3. Contreras, A., Sánchez-Pérez, R. M. & Alonso, G. (1978). Cancer Chemother. Pharmacol.1, 243–247. [DOI] [PubMed]
  4. Monkowius, U., Ritter, S., Konig, B., Zabel, M. & Yersin, H. (2007). Eur. J. Inorg. Chem. pp. 4597–4606.
  5. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Piterskaya, Yu. L., Khramchikhin, A. V. & Stadnichuk, M. D. (1996b). Russ. J. Gen. Chem.66, 1158–1165.
  7. Piterskaya, Yu. L., Khramchikhin, A. V., Stadnichuk, M. D., Bel’sky, V. K. & Stash, A. I. (1996a). Russ. J. Gen. Chem.66, 1150–1957.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021999/kp2262sup1.cif

e-66-o1674-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021999/kp2262Isup2.hkl

e-66-o1674-Isup2.hkl (120.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES