Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 23;66(Pt 7):m826–m827. doi: 10.1107/S1600536810023081

Bis(2-amino-4-methyl­pyridinium) trans-diaqua­bis­(pyrazine-2,3-dicarboxyl­ato)cuprate(II) hexa­hydrate

Hossein Eshtiagh-Hosseini a,*, Fabienne Gschwind b, Nafiseh Alfi a, Masoud Mirzaei a
PMCID: PMC3007013  PMID: 21587740

Abstract

The title compound, (C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O, consists of a mononuclear trans-[Cu(pzdc)2(H2O)2]2− dianion (pzdc is pyrazine-2,3-dicarboxyl­ate) and two [ampyH]+ cations (ampy is 2-amino-4-methyl­pyridine) with six water mol­ecules of solvation. The CuII atom is hexa­coordinated by two pzdc groups and two water mol­ecules. The coordinated water mol­ecules are in trans-diaxial positions and the pzdc dianion acts as a bidentate ligand through an O atom of the carboxyl­ate group and the N atom of the pyrazine ring. There are diverse hydrogen-bonding inter­actions, such as N—H⋯O and O—H⋯O contacts, which lead to the formation of a three-dimensional supra­molecular architecture.

Related literature

For the crystal structure of pyrazine-2,3-dicarb­oxy­lic acid (pzdcH2), see: Takusagawa & Shimada (1973). For complexes of pzdcH2 with manganese and zinc, see: Eshtiagh-Hosseini et al. (2010a ,b ). For the structure of bis­(2,4,6-triamino-1,3,5-triazin-1-ium) pyrazine-2,3-dicarboxyl­ate tetra­hydrate, see: Eshtiagh-Hosseini et al. (2010c ). For a review articleon water cluster chemistry, see: Aghabozorg et al. (2010).graphic file with name e-66-0m826-scheme1.jpg

Experimental

Crystal data

  • (C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O

  • M r = 758.17

  • Triclinic, Inline graphic

  • a = 6.9075 (14) Å

  • b = 8.4710 (17) Å

  • c = 14.505 (3) Å

  • α = 78.28 (3)°

  • β = 83.62 (3)°

  • γ = 85.81 (3)°

  • V = 824.8 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection

  • Stoe IPDS 2 diffractometer

  • Absorption correction: for a sphere [modified Dwiggins (1975) interpolation procedure] T min = 0.743, T max = 0.745

  • 17015 measured reflections

  • 4684 independent reflections

  • 4282 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.092

  • S = 1.04

  • 4684 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-RED (Stoe & Cie, 2009); data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023081/fj2310sup1.cif

e-66-0m826-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023081/fj2310Isup2.hkl

e-66-0m826-Isup2.hkl (224.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H13⋯O4i 0.82 1.91 2.7221 (19) 169
N4—H14A⋯O8ii 0.77 2.12 2.8879 (19) 177
N4—H14B⋯O3i 0.84 (2) 2.07 (2) 2.903 (2) 168 (2)
O5—H5B⋯O7i 0.79 (3) 1.92 (3) 2.703 (2) 173 (3)
O5—H5A⋯O4i 0.82 (3) 2.09 (3) 2.8556 (18) 157 (3)
O8—H8B⋯O1iii 0.76 (3) 2.03 (3) 2.7838 (18) 173 (3)
O6—H6B⋯O4iii 0.81 (4) 2.06 (4) 2.839 (2) 162 (3)
O7—H17B⋯O8iv 0.76 (4) 2.04 (4) 2.797 (2) 172 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Ferdowsi University of Mashhad is gratefully acknowledged for financial support.

supplementary crystallographic information

Comment

Dicarboxylate ligands are widely used to assemble supramolecular network organized by coordination bonds, hydrogen bonds and π –π stacking interaction. Due to the manifold N- and O-donors of pyridine or pyrazine-(di)carboxylic ligands, metal pyridine- or pyrazine dicarboxylates can contrast versatile structural motifs, which finally aggregate to generate various supramolecular architectures with interesting properties. As ones of the dicarboxylate ligands, pzdcH2 have drawn extensive attentions. For the first time, Takusagawa & Shimada (1973) by single crystal X-ray diffraction, determined the structure of pzdcH2. Continuing with our previous works on synthesizing coordination compounds via proton transfer mechanism including zinc atom (Eshtiagh-Hosseini et al., 2010a), manganese atom (Eshtiagh-Hosseini et al., 2010b), Bis(2,4,6-triamino-1,3,5-triazin-1-ium) pyrazine-2,3-dicarboxylate tetrahydrate (Eshtiagh-Hosseini et al., 2010c), herein, we planned the reaction between pzdcH2, ampy, and copper(II) choloride which resulted in the formation of (ampy)2[Cu(pzdc)2(H2O)2]. 6H2O (Fig. 1). Crystal packing diagram related to the title compound is also rendered in the Fig. 2. As you can see, the equatorial plane is occupied by two (pzdc)2- ligands coordinating through the pyridine nitrogen and one oxygen of the deprotonated carboxylate groups. The two coordinated water molecules occupy axial plane. This compound consists of an anionic moiety, trans-[Cu(pzdc)2(H2O)2]2- complex, counter-ions, (ampy)+, and six uncoordinated water molecules. The Cu—O and Cu—N bond distances related to (pzdc)2- ligand in herein presented compound are in the category of 1.9644 (13) Å , and 1.9840 (14) Å, respectively. These observerd bond lenghts are comprable with Zn(II) polymeric coordination compound which recently reported by our research group (Eshtiagh-Hosseini et al., 2010a ). In this polymeric compound which consist of only (pzdc)2- coordinative ligand, {(C3H12N2)2[Zn(C10H2O8)2]}n, Zn—O and Zn—N bond distances are 2.0317 (15) to 2.2437 (15) Å, and 2.0901 (18) Å, respectively. These data show in this polymeric compound Zn—O bond distance is longer than herein presented compound. The intermolecular forces between the anionic and cationic parts in the title compound consist of hydrogen bonding and ion pairing interactions. Indeed, six uncoordinated water molecules increase the number of hydrogen bonds in the crystalline network and lead to the formation of (H2O)n clusters throughout the crystalline network (see Review article by Aghabozorg et al. 2010).

Experimental

A solution of pzdcH2 (0.18 mmol, 0.03 mg) in water (10 ml) refluxed for 1 hr, then a solution of CuCl2.6H2O (0.02 mmol, 0.01 g) was added dropwise and continued refluxing for 6 hrs at 60°C. The obtained blue solution gave blue block like crystals of title compound after slow evaporation of solvent at room temperatur.

Refinement

The space group was confirmed by using PLATON software package. The structure was solved by direct methods using SHELXS-97 and refined using full matrix least-squares on F2 with the SHELX-97 package. H-Atoms were constrained to the parent site using a rigid model. A final verification of possible voids was performed using the VOID routine on PLATON software.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (ampy)2[Cu(pzdc)2(H2O)2].6H2O. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for further clarity.

Fig. 2.

Fig. 2.

Packing diagram of (ampy)2[Cu(pzdc)2(H2O)2].6H2O.

Crystal data

(C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O Z = 1
Mr = 758.17 F(000) = 395.0
Triclinic, P1 Dx = 1.526 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9075 (14) Å Cell parameters from 34097 reflections
b = 8.4710 (17) Å θ = 3,8–59,7°
c = 14.505 (3) Å µ = 0.75 mm1
α = 78.28 (3)° T = 293 K
β = 83.62 (3)° Block, blue
γ = 85.81 (3)° 0.3 × 0.2 × 0.1 mm
V = 824.8 (3) Å3

Data collection

Stoe IPDS 2 diffractometer 4684 independent reflections
Radiation source: fine-focus sealed tube 4282 reflections with I > 2σ(I)
graphite Rint = 0.046
Detector resolution: 6.67 pixels mm-1 θmax = 29.8°, θmin = 2.5°
rotation method scans h = −9→9
Absorption correction: for a sphere modified Dwiggins (1975) interpolation procedure k = −11→11
Tmin = 0.743, Tmax = 0.745 l = −20→20
17015 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.5453P] where P = (Fo2 + 2Fc2)/3
4684 reflections (Δ/σ)max = 0.001
268 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.52 e Å3

Special details

Experimental. Absorption correction: Interpolation using Int. Tab. Vol. C (1992) p. 523, Tab. 6.3.3.3 for values of muR in the range 0-2.5, and Int. Tab. Vol. II (1959) p. 302; Table 5.3.6 B for muR in the range 2.6-10.0. The interpolation procedure of C. W. Dwiggins Jr is used with some modification.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.0000 0.0000 0.5000 0.01658 (8)
O3 0.30782 (17) 0.49841 (13) 0.17617 (8) 0.0195 (2)
O4 0.11843 (16) 0.64677 (13) 0.26546 (8) 0.0180 (2)
O1 −0.09643 (16) 0.33706 (13) 0.27415 (8) 0.0190 (2)
O5 0.1806 (2) −0.17345 (17) 0.40519 (9) 0.0258 (3)
O2 −0.12649 (16) 0.11778 (13) 0.38957 (8) 0.0189 (2)
N1 0.19550 (18) 0.16670 (15) 0.45776 (8) 0.0147 (2)
N2 0.43093 (18) 0.41844 (16) 0.37769 (9) 0.0173 (2)
C1 −0.0415 (2) 0.24286 (17) 0.34432 (10) 0.0144 (2)
C2 0.1458 (2) 0.27423 (16) 0.38093 (9) 0.0134 (2)
C5 0.2651 (2) 0.40007 (17) 0.34084 (10) 0.0139 (2)
C4 0.4760 (2) 0.31081 (19) 0.45398 (11) 0.0187 (3)
H4 0.5897 0.3212 0.4806 0.022*
C3 0.3583 (2) 0.18338 (18) 0.49501 (10) 0.0171 (3)
H3 0.3936 0.1103 0.5483 0.021*
C6 0.2244 (2) 0.52402 (17) 0.25287 (10) 0.0148 (2)
N3 0.17729 (19) −0.08982 (15) 0.12469 (9) 0.0175 (2)
H13 0.1634 −0.1765 0.1614 0.021*
N4 0.2985 (2) −0.23942 (16) 0.01280 (10) 0.0200 (3)
H14A 0.3217 −0.2450 −0.0394 0.024*
C10 0.2467 (2) −0.09571 (18) 0.03481 (10) 0.0160 (3)
C9 0.2613 (2) 0.05143 (19) −0.03132 (11) 0.0184 (3)
C8 0.2056 (2) 0.19545 (18) −0.00370 (11) 0.0197 (3)
C11 0.1206 (2) 0.05082 (19) 0.15352 (11) 0.0212 (3)
H11 0.0728 0.0489 0.2162 0.025*
C12 0.1332 (3) 0.19396 (19) 0.09169 (12) 0.0223 (3)
C7 0.2186 (3) 0.3528 (2) −0.07308 (14) 0.0288 (4)
H7A 0.2698 0.4314 −0.0443 0.043*
H7B 0.0911 0.3898 −0.0912 0.043*
H7C 0.3034 0.3379 −0.1281 0.043*
O6 0.7121 (2) 0.67499 (18) 0.32078 (13) 0.0381 (4)
O7 0.4817 (2) 0.9530 (2) 0.28417 (12) 0.0385 (3)
O8 0.60159 (18) 0.25375 (14) 0.18411 (8) 0.0203 (2)
H12 0.097 (4) 0.287 (3) 0.1154 (19) 0.040 (7)*
H14B 0.289 (3) −0.322 (3) 0.0565 (17) 0.024 (5)*
H9 0.311 (3) 0.045 (2) −0.0939 (15) 0.017 (5)*
H5B 0.267 (4) −0.130 (3) 0.372 (2) 0.040 (7)*
H5A 0.138 (4) −0.236 (3) 0.377 (2) 0.040 (7)*
H8A 0.516 (4) 0.326 (3) 0.1824 (19) 0.039 (7)*
H8B 0.677 (4) 0.279 (3) 0.2116 (19) 0.034 (6)*
H6B 0.823 (5) 0.645 (4) 0.306 (2) 0.057 (9)*
H6A 0.632 (6) 0.606 (5) 0.333 (3) 0.076 (11)*
H17A 0.570 (5) 0.885 (4) 0.288 (2) 0.049 (8)*
H17B 0.524 (5) 1.032 (4) 0.259 (3) 0.062 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01841 (13) 0.01479 (13) 0.01464 (12) −0.00519 (9) −0.00398 (9) 0.00436 (9)
O3 0.0237 (5) 0.0173 (5) 0.0150 (5) 0.0014 (4) 0.0007 (4) 0.0003 (4)
O4 0.0203 (5) 0.0131 (5) 0.0190 (5) 0.0006 (4) −0.0017 (4) −0.0002 (4)
O1 0.0208 (5) 0.0176 (5) 0.0172 (5) −0.0032 (4) −0.0062 (4) 0.0032 (4)
O5 0.0265 (6) 0.0295 (6) 0.0239 (6) −0.0017 (5) −0.0016 (5) −0.0116 (5)
O2 0.0193 (5) 0.0175 (5) 0.0185 (5) −0.0068 (4) −0.0056 (4) 0.0037 (4)
N1 0.0172 (5) 0.0131 (5) 0.0129 (5) −0.0012 (4) −0.0023 (4) 0.0003 (4)
N2 0.0158 (5) 0.0174 (6) 0.0179 (6) −0.0020 (4) −0.0023 (4) −0.0007 (5)
C1 0.0154 (6) 0.0140 (6) 0.0134 (6) −0.0015 (5) −0.0013 (5) −0.0014 (5)
C2 0.0149 (6) 0.0124 (6) 0.0121 (6) −0.0004 (5) −0.0013 (5) −0.0006 (5)
C5 0.0149 (6) 0.0125 (6) 0.0133 (6) 0.0006 (5) −0.0005 (5) −0.0014 (5)
C4 0.0165 (6) 0.0196 (7) 0.0196 (7) −0.0020 (5) −0.0051 (5) −0.0009 (5)
C3 0.0193 (6) 0.0165 (6) 0.0148 (6) 0.0005 (5) −0.0044 (5) −0.0006 (5)
C6 0.0154 (6) 0.0127 (6) 0.0154 (6) −0.0035 (5) −0.0015 (5) 0.0004 (5)
N3 0.0221 (6) 0.0146 (5) 0.0143 (5) −0.0001 (4) −0.0021 (4) 0.0007 (4)
N4 0.0262 (6) 0.0161 (6) 0.0162 (6) 0.0006 (5) −0.0010 (5) −0.0009 (5)
C10 0.0155 (6) 0.0175 (6) 0.0149 (6) −0.0022 (5) −0.0036 (5) −0.0010 (5)
C9 0.0185 (6) 0.0192 (7) 0.0156 (6) −0.0020 (5) −0.0021 (5) 0.0014 (5)
C8 0.0194 (7) 0.0159 (7) 0.0223 (7) −0.0034 (5) −0.0057 (5) 0.0022 (5)
C11 0.0277 (8) 0.0199 (7) 0.0161 (6) 0.0016 (6) −0.0033 (6) −0.0043 (6)
C12 0.0282 (8) 0.0164 (7) 0.0232 (7) −0.0002 (6) −0.0067 (6) −0.0044 (6)
C7 0.0340 (9) 0.0173 (7) 0.0308 (9) −0.0031 (6) −0.0035 (7) 0.0058 (6)
O6 0.0263 (7) 0.0240 (7) 0.0620 (10) −0.0045 (5) 0.0142 (7) −0.0127 (7)
O7 0.0273 (7) 0.0304 (7) 0.0498 (9) −0.0033 (6) −0.0024 (6) 0.0108 (7)
O8 0.0208 (5) 0.0204 (5) 0.0203 (5) 0.0013 (4) −0.0044 (4) −0.0051 (4)

Geometric parameters (Å, °)

Cu1—O2 1.9644 (13) N3—C11 1.358 (2)
Cu1—O2i 1.9644 (12) N3—H13 0.8202
Cu1—N1 1.9840 (14) N4—C10 1.335 (2)
Cu1—N1i 1.9840 (14) N4—H14A 0.7669
Cu1—O5 2.4038 (15) N4—H14B 0.84 (2)
Cu1—O5i 2.4038 (15) C10—C9 1.412 (2)
O3—C6 1.2467 (18) C9—C8 1.376 (2)
O4—C6 1.2597 (18) C9—H9 0.95 (2)
O1—C1 1.2364 (18) C8—C12 1.416 (2)
O5—H5B 0.79 (3) C8—C7 1.500 (2)
O5—H5A 0.82 (3) C11—C12 1.356 (2)
O2—C1 1.2732 (18) C11—H11 0.9300
N1—C3 1.3291 (19) C12—H12 0.93 (3)
N1—C2 1.3477 (18) C7—H7A 0.9600
N2—C4 1.333 (2) C7—H7B 0.9600
N2—C5 1.3486 (18) C7—H7C 0.9600
C1—C2 1.5119 (19) O6—H6B 0.81 (4)
C2—C5 1.387 (2) O6—H6A 0.81 (4)
C5—C6 1.517 (2) O7—H17A 0.80 (3)
C4—C3 1.393 (2) O7—H17B 0.76 (4)
C4—H4 0.9300 O8—H8A 0.81 (3)
C3—H3 0.9300 O8—H8B 0.76 (3)
N3—C10 1.3475 (19)
O2—Cu1—O2i 180.00 (4) N1—C3—H3 120.1
O2—Cu1—N1 83.31 (5) C4—C3—H3 120.1
O2i—Cu1—N1 96.69 (5) O3—C6—O4 126.59 (14)
O2—Cu1—N1i 96.69 (5) O3—C6—C5 116.73 (13)
O2i—Cu1—N1i 83.31 (5) O4—C6—C5 116.56 (13)
N1—Cu1—N1i 180.00 (7) C10—N3—C11 122.73 (14)
O2—Cu1—O5 90.70 (5) C10—N3—H13 116.8
O2i—Cu1—O5 89.30 (5) C11—N3—H13 120.3
N1—Cu1—O5 90.80 (6) C10—N4—H14A 119.0
N1i—Cu1—O5 89.20 (6) C10—N4—H14B 117.9 (15)
O2—Cu1—O5i 89.30 (5) H14A—N4—H14B 122.6
O2i—Cu1—O5i 90.70 (5) N4—C10—N3 118.61 (14)
N1—Cu1—O5i 89.20 (6) N4—C10—C9 123.36 (14)
N1i—Cu1—O5i 90.80 (6) N3—C10—C9 118.02 (14)
O5—Cu1—O5i 180.00 (5) C8—C9—C10 120.30 (14)
Cu1—O5—H5B 113 (2) C8—C9—H9 123.0 (12)
Cu1—O5—H5A 127.8 (19) C10—C9—H9 116.7 (12)
H5B—O5—H5A 107 (3) C9—C8—C12 119.11 (14)
C1—O2—Cu1 114.87 (9) C9—C8—C7 121.06 (15)
C3—N1—C2 119.43 (13) C12—C8—C7 119.83 (15)
C3—N1—Cu1 129.00 (10) C12—C11—N3 120.60 (15)
C2—N1—Cu1 111.57 (10) C12—C11—H11 119.7
C4—N2—C5 117.45 (13) N3—C11—H11 119.7
O1—C1—O2 126.27 (13) C11—C12—C8 119.24 (15)
O1—C1—C2 118.40 (13) C11—C12—H12 117.2 (17)
O2—C1—C2 115.33 (12) C8—C12—H12 123.5 (17)
N1—C2—C5 120.04 (13) C8—C7—H7A 109.5
N1—C2—C1 114.86 (12) C8—C7—H7B 109.5
C5—C2—C1 125.09 (12) H7A—C7—H7B 109.5
N2—C5—C2 121.23 (13) C8—C7—H7C 109.5
N2—C5—C6 114.89 (13) H7A—C7—H7C 109.5
C2—C5—C6 123.87 (13) H7B—C7—H7C 109.5
N2—C4—C3 122.10 (14) H6B—O6—H6A 117 (3)
N2—C4—H4 118.9 H17A—O7—H17B 107 (3)
C3—C4—H4 118.9 H8A—O8—H8B 105 (3)
N1—C3—C4 119.74 (14)

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H13···O4ii 0.82 1.91 2.7221 (19) 169
N4—H14A···O8iii 0.77 2.12 2.8879 (19) 177
N4—H14B···O3ii 0.84 (2) 2.07 (2) 2.903 (2) 168 (2)
O5—H5B···O7ii 0.79 (3) 1.92 (3) 2.703 (2) 173 (3)
O5—H5A···O4ii 0.82 (3) 2.09 (3) 2.8556 (18) 157 (3)
O8—H8B···O1iv 0.76 (3) 2.03 (3) 2.7838 (18) 173 (3)
O6—H6B···O4iv 0.81 (4) 2.06 (4) 2.839 (2) 162 (3)
O7—H17B···O8v 0.76 (4) 2.04 (4) 2.797 (2) 172 (4)

Symmetry codes: (ii) x, y−1, z; (iii) −x+1, −y, −z; (iv) x+1, y, z; (v) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2310).

References

  1. Aghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J Iran Chem Soc 7, 289–300.
  2. Crystal Impact (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Dwiggins, C. W. (1975). Acta Cryst. A31, 146–148.
  4. Eshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010a). Acta Cryst. E66 Submitted. [XU2784] [DOI] [PMC free article] [PubMed]
  5. Eshtiagh-Hosseini, H., Hassanpoor, A., Alfi, N., Mirzaei, M., Fromm, K. M., Shokrollahi, A., Gschwind, F. & Karami, E. (2010b). J. Coord. Chem. In the press.
  6. Eshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010c). Acta Cryst. E66, o1368–o1369. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stoe & Cie (2009). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.
  9. Takusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121–1123.
  10. Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023081/fj2310sup1.cif

e-66-0m826-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023081/fj2310Isup2.hkl

e-66-0m826-Isup2.hkl (224.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES