Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 16;66(Pt 7):m767–m768. doi: 10.1107/S160053681002088X

Dibromido[1,1′-dibutyl-2,2′-(pentane-1,1-di­yl)di-1H-benzimidazole]­copper(II)

Robert T Stibrany a,*, Joseph A Potenza a
PMCID: PMC3007084  PMID: 21587699

Abstract

In the title compound, [CuBr2(C27H36N4)], the CuII ion exhibits a distorted tetra­hedral coordination geometry provided by two bromide ions and by chelation of two imine N-atom donors from a bis­(benzimidazole) ligand. Chelation results in a six-membered boat-shaped ring which links the benzimidazole groups. Each bis­(benzimidazole) fragment contains three n-butyl substituents, two of which have the expected trans conformation; the third exhibits the higher-energy cis conformation, an orientation consistent with several short intra­molecular C—H⋯Br inter­actions. Essentially planar (r.m.s. deviations of 0.0101 and 0.0183 Å) benzimidazole groups are oriented so as to give the bis­(benzimidazole) fragment a V-shaped appearance in profile with the cis and trans n-butyl groups directed to opposite sides of the planes. In the crystal, columns of mol­ecules along the b-axis direction form layers parallel to the (202) planes. Within a given column, the mol­ecules are linked by C—H⋯Br hydrogen bonds. The mol­ecules in adjacent columns are also linked by inter­molecular C—H⋯π interactions, forming a three-dimensional network.

Related literature

For the applications of bis­(imidazoles), bis­(benzimidazoles), and their complexes with metal ions, see: Stibrany et al. (2002, 2003, 2004); Knapp et al. (1990). For related structures see: Stibrany (2009); Stibrany et al. 2005); Stibrany & Potenza (2006, 2008); Hou et al. (2006).graphic file with name e-66-0m767-scheme1.jpg

Experimental

Crystal data

  • [CuBr2(C27H36N4)]

  • M r = 639.96

  • Monoclinic, Inline graphic

  • a = 13.521 (2) Å

  • b = 14.604 (3) Å

  • c = 13.881 (2) Å

  • β = 96.636 (3)°

  • V = 2722.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.76 mm−1

  • T = 100 K

  • 0.45 × 0.18 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.644, T max = 1.00

  • 25644 measured reflections

  • 5405 independent reflections

  • 4692 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.066

  • S = 1.00

  • 5405 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002088X/lh5058sup1.cif

e-66-0m767-sup1.cif (26.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002088X/lh5058Isup2.hkl

e-66-0m767-Isup2.hkl (264.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—N23 1.9536 (19)
Cu1—N13 1.994 (2)
Cu1—Br1 2.3563 (5)
Cu1—Br2 2.3608 (5)
N23—Cu1—N13 90.44 (8)
N23—Cu1—Br1 130.64 (6)
N13—Cu1—Br1 106.87 (6)
N23—Cu1—Br2 98.49 (6)
N13—Cu1—Br2 134.58 (6)
Br1—Cu1—Br2 100.523 (16)
C22—C1—C12 110.63 (19)

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N11/C11/C13/N13/C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Br1 0.95 2.79 3.551 (3) 138
C17—H17⋯Br2i 0.95 2.90 3.606 (3) 132
C18—H18A⋯Br1ii 0.99 2.86 3.741 (3) 148
C5—H5BCg1ii 0.98 2.87 3.631 (3) 135
C2B—H2B1⋯Cg1iii 0.98 2.82 3.777 (3) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

The title compound (I) was prepared as part of our long-term interest in the chemistry of bis(imidazoles), bis(benzimidazoles), and their complexes with metal ions. These species have demonstrated their usefulness as proton sponges (Stibrany et al., 2002), geometrically constraining ligands (Stibrany et al., 2004), agents to study electron transfer (Knapp et al., 1990), polymerization catalysts (Stibrany et al., 2003), and in the formation of metal-organic copolymers (Stibrany & Potenza, 2008).

The structure of [1,1'-bis(1-butylbenzimidazol-2-yl) pentane]copper(II) dibromide, (I), contains molecules (Fig. 1) in which two essentially planar benzimidazole fragments are linked by the a bridging (bridgehead) carbon atom C1 and a Cu(II) ion, which forms Cu—N(imine) bonds to N13 and N23, to complete a six-membered Cu1—N13—C12—C1—C22—N23- ring. The ring adopts a boat conformation with the copper(II) ion and the bridgehead carbon atom corresponding to the bow and stern, respectively. The angles N23—Cu1—N13 and C22—C1—C12 (Table 1), at the bow and stern, respectively, give the molecule a V-shape in profile (Fig. 2). Two bromine atoms, Br1 and Br2, complete a distorted-teterrahedral coordination geometry at Cu1, as evidenced by the several angles at Cu1 (Table 1) and by the "tetrahedral twist dihedral angle" N13—Cu1—N23/Br1—Cu1—Br2, 65.08 (6)°. Of the three n-butyl groups, two exhibit the trans conformation and extend above the planes of the benzimidazole fragments (Fig. 1), while the third, bonded to the bridgehead carbon atom C1, exhibits the higher-energy cis conformation and is positioned below the planes of the benzimidazole rings. The cis orientation is consistent with several intramolecular C—H···Br interactions whose H···Br (Br2···H2B, 3.1147 Å and Br2···H4A, 3.6145 Å) distances are too long to be considered hydrogen bonds, yet too short to be ignored. Lastly, we note that the complex exhibits an intramolecular C14—H14···Br1 hydrogen bond (Table 2).

In the crystal, molecules of (I) form columns along the b cell direction (Fig. 2) centered about the twofold screw axes at 1/4 b 1/4 and symmetry related positions in space group P21/n. Within a given column, the molecules are linked by C18—H18b···Br1 hydrogen bonds (Fig. 3) to give each column spirial staircase appearance along its length. The columns are arranged in layers parallel to the (2 0 2) planes (Fig.2), and are linked together by intermolecular C17—H17···Br2 hydrogen bonds (Fig. 4) to yield a three-dimensional network structure. The C—H and H···Br distances for the C—H···Br hydrogen bonds in (I) (Table 2) compare favorably with those reported previously for a distorted-tetrahedral Cu(I) bromide complex (Hou et al., 2006).

In related structures, alkyl chains, substituted at the N(amine) and bridgehead positions of bis(benzimidazoles), have been observed in three permutations with respect to the benzimidazole planes: all to one side, two up, bridgehead substituent down as in the present instance, and two up, N(amine) substituent down (Stibrany, 2009). In the structure of the free ligand of (I) (Stibrany et al., 2003), all three alkyl chains assume the trans conformation. Presumably, the way in which these molecules pack in a crystal determines to some extent the conformation of these substituents, or vice versa. In the analogous dichloride complex, the alkyl chains are arranged similarly to those in (I) (Stibrany et al., 2003). In fact, (I) and its dichloro analogue are isomorphous.

Experimental

Compound (I) was prepared from the addition of 200 mg (0.48 mmol) of [1,1'-bis(1-butylbenzimidazol-2-yl) pentane] (Stibrany et al., 2003) and 107 mg (0.48 mmol) of CuBr2 to a mixture of 20 ml of ethanol and 2 ml of triethylorthoformate. This mixture was warmed gently for 5 min and then allowed to evaporate slowly. When the volume was reduced by approximately 60%, dark red crystals of (I) had formed and were collected by filtration, and dried in air. Yield 301 mg (yield 98.0%). (m.p. 486 K(melt) IR (KBr pellet, cm-1): 2957 (s), 2930 (m), 22871 (w), 1613 (w), 1509 (m), 1455 (s), 1281 (w), 1015 (w), 755 (s).

Refinement

Hydrogen atoms were positioned geometrically using a riding model, with C—H = 0.95 and 1.00 Å, respectively, for n-butyl and benzimidazole H atom, and Uiso(H) = 1.2-1.5 Ueq (C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound (I) showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

View showing columns of the core structure of (I) along the b axis direction. H atoms and 1-butyl groups have been omitted for clarity.

Fig. 3.

Fig. 3.

View, showing a column of molecules of (I) extending along the b axis direction.

Fig. 4.

Fig. 4.

View, approximately along the b axis direction showing the C—H···Br hydrogen bonds which link the columns shown in Fig. 2. Except for those involved in hydrogen bonding, H atoms and 1-butyl C atoms have been omitted for clarity.

Crystal data

[CuBr2(C27H36N4)] F(000) = 1300
Mr = 639.96 Dx = 1.561 Mg m3
Monoclinic, P21/n Melting point: 486 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 13.521 (2) Å Cell parameters from 982 reflections
b = 14.604 (3) Å θ = 2.2–25.9°
c = 13.881 (2) Å µ = 3.76 mm1
β = 96.636 (3)° T = 100 K
V = 2722.6 (8) Å3 Blade, red
Z = 4 0.45 × 0.18 × 0.07 mm

Data collection

Bruker SMART CCD area-detector diffractometer 5405 independent reflections
Radiation source: fine-focus sealed tube 4692 reflections with I > 2σ(I)
graphite Rint = 0.038
φ and ω scans θmax = 26.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −16→16
Tmin = 0.644, Tmax = 1.00 k = −18→18
25644 measured reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0324P)2 + 2.745P] where P = (Fo2 + 2Fc2)/3
5405 reflections (Δ/σ)max = 0.001
310 parameters Δρmax = 0.74 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.10186 (2) 0.119645 (19) 0.230340 (19) 0.01124 (8)
Br1 0.045118 (19) −0.023221 (16) 0.167330 (18) 0.01896 (7)
Br2 −0.049244 (18) 0.184464 (17) 0.267178 (17) 0.01820 (7)
N11 0.34142 (15) 0.24098 (13) 0.12023 (14) 0.0130 (4)
N13 0.20969 (15) 0.16010 (13) 0.15332 (14) 0.0122 (4)
N21 0.30460 (14) 0.21513 (13) 0.45058 (14) 0.0131 (4)
N23 0.18474 (14) 0.15045 (13) 0.35070 (13) 0.0115 (4)
C1 0.27426 (17) 0.27602 (15) 0.27828 (16) 0.0116 (5)
H1 0.3394 0.3081 0.2948 0.014*
C2 0.18961 (18) 0.34819 (16) 0.26140 (17) 0.0146 (5)
H2A 0.2043 0.3897 0.2085 0.018*
H2B 0.1265 0.3162 0.2395 0.018*
C3 0.17497 (19) 0.40545 (17) 0.35029 (18) 0.0188 (5)
H3A 0.2319 0.4479 0.3640 0.023*
H3B 0.1739 0.3646 0.4071 0.023*
C4 0.0784 (2) 0.46057 (19) 0.3362 (2) 0.0280 (6)
H4A 0.0215 0.4175 0.3301 0.034*
H4B 0.0739 0.4983 0.3948 0.034*
C5 0.0688 (2) 0.52288 (19) 0.2482 (2) 0.0321 (7)
H5A 0.0632 0.4857 0.1890 0.048*
H5B 0.1279 0.5621 0.2503 0.048*
H5C 0.0093 0.5611 0.2484 0.048*
C11 0.31456 (18) 0.18592 (16) 0.03975 (17) 0.0141 (5)
C12 0.27675 (17) 0.22314 (16) 0.18544 (16) 0.0118 (5)
C13 0.23188 (18) 0.13538 (16) 0.06078 (17) 0.0135 (5)
C14 0.18405 (18) 0.07574 (17) −0.00812 (17) 0.0159 (5)
H14 0.1276 0.0411 0.0049 0.019*
C15 0.22204 (19) 0.06923 (18) −0.09575 (18) 0.0206 (5)
H15 0.1911 0.0291 −0.1440 0.025*
C16 0.3049 (2) 0.1202 (2) −0.11563 (19) 0.0254 (6)
H16 0.3288 0.1137 −0.1770 0.030*
C17 0.3529 (2) 0.17963 (18) −0.04871 (18) 0.0199 (5)
H17 0.4091 0.2144 −0.0622 0.024*
C18 0.42282 (19) 0.30825 (16) 0.12849 (19) 0.0175 (5)
H18A 0.4043 0.3605 0.1682 0.021*
H18B 0.4310 0.3319 0.0630 0.021*
C19 0.52200 (19) 0.26958 (18) 0.17390 (19) 0.0211 (5)
H19A 0.5114 0.2389 0.2355 0.025*
H19B 0.5685 0.3212 0.1900 0.025*
C1A 0.5710 (2) 0.20174 (19) 0.1109 (2) 0.0250 (6)
H1A1 0.5247 0.1503 0.0936 0.030*
H1A2 0.5842 0.2324 0.0501 0.030*
C1B 0.6683 (2) 0.1643 (2) 0.1619 (2) 0.0350 (7)
H1B1 0.6549 0.1296 0.2194 0.053*
H1B2 0.7134 0.2151 0.1815 0.053*
H1B3 0.6993 0.1239 0.1175 0.053*
C21 0.26253 (18) 0.14778 (15) 0.50387 (17) 0.0131 (5)
C22 0.25617 (17) 0.21300 (15) 0.35975 (16) 0.0112 (5)
C23 0.18673 (18) 0.10799 (16) 0.44063 (17) 0.0129 (5)
C24 0.12813 (18) 0.03726 (16) 0.47082 (17) 0.0152 (5)
H24 0.0759 0.0107 0.4282 0.018*
C25 0.14950 (19) 0.00760 (17) 0.56540 (18) 0.0187 (5)
H25 0.1114 −0.0407 0.5884 0.022*
C26 0.2264 (2) 0.04736 (17) 0.62821 (18) 0.0193 (5)
H26 0.2392 0.0248 0.6926 0.023*
C27 0.28417 (19) 0.11836 (17) 0.59950 (17) 0.0172 (5)
H27 0.3357 0.1455 0.6425 0.021*
C29 0.48784 (19) 0.24181 (18) 0.46606 (19) 0.0216 (6)
H29A 0.5389 0.2877 0.4896 0.026*
H29B 0.4872 0.2372 0.3948 0.026*
C28 0.38695 (18) 0.27632 (17) 0.48784 (18) 0.0167 (5)
H28A 0.3876 0.2827 0.5589 0.020*
H28B 0.3751 0.3377 0.4586 0.020*
C2A 0.5186 (2) 0.14970 (18) 0.5108 (2) 0.0226 (6)
H2A1 0.4689 0.1029 0.4865 0.027*
H2A2 0.5193 0.1536 0.5821 0.027*
C2B 0.6213 (2) 0.1199 (2) 0.4870 (2) 0.0291 (6)
H2B1 0.6709 0.1657 0.5114 0.044*
H2B2 0.6203 0.1141 0.4166 0.044*
H2B3 0.6384 0.0607 0.5177 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01029 (15) 0.01486 (14) 0.00862 (14) −0.00107 (11) 0.00129 (11) −0.00152 (11)
Br1 0.01931 (14) 0.01686 (13) 0.02065 (13) −0.00290 (10) 0.00205 (10) −0.00428 (10)
Br2 0.01408 (13) 0.02410 (14) 0.01700 (13) 0.00417 (10) 0.00434 (9) −0.00078 (10)
N11 0.0141 (10) 0.0135 (10) 0.0115 (10) −0.0003 (8) 0.0023 (8) 0.0012 (8)
N13 0.0134 (10) 0.0129 (9) 0.0106 (9) 0.0011 (8) 0.0025 (8) −0.0001 (8)
N21 0.0134 (10) 0.0136 (10) 0.0121 (10) −0.0023 (8) 0.0006 (8) 0.0010 (8)
N23 0.0133 (10) 0.0123 (9) 0.0088 (9) 0.0001 (8) 0.0007 (8) 0.0007 (7)
C1 0.0120 (11) 0.0123 (11) 0.0107 (11) −0.0004 (9) 0.0019 (9) 0.0011 (9)
C2 0.0169 (13) 0.0129 (11) 0.0141 (12) 0.0003 (9) 0.0015 (9) 0.0011 (9)
C3 0.0214 (14) 0.0182 (12) 0.0172 (13) 0.0023 (10) 0.0038 (10) −0.0035 (10)
C4 0.0233 (15) 0.0259 (14) 0.0359 (16) 0.0070 (12) 0.0078 (12) −0.0091 (12)
C5 0.0291 (16) 0.0205 (14) 0.0444 (19) 0.0098 (12) −0.0054 (14) −0.0088 (13)
C11 0.0141 (12) 0.0166 (12) 0.0116 (11) 0.0024 (9) 0.0020 (9) 0.0021 (9)
C12 0.0108 (11) 0.0142 (11) 0.0104 (11) 0.0032 (9) 0.0011 (9) 0.0035 (9)
C13 0.0141 (12) 0.0156 (12) 0.0112 (11) 0.0057 (9) 0.0028 (9) 0.0011 (9)
C14 0.0155 (12) 0.0184 (12) 0.0136 (12) 0.0021 (10) 0.0005 (9) −0.0002 (10)
C15 0.0188 (13) 0.0277 (14) 0.0148 (12) −0.0010 (11) −0.0005 (10) −0.0048 (10)
C16 0.0232 (14) 0.0417 (16) 0.0121 (13) 0.0002 (12) 0.0063 (11) −0.0020 (11)
C17 0.0174 (13) 0.0284 (14) 0.0151 (12) −0.0025 (11) 0.0067 (10) 0.0003 (10)
C18 0.0197 (13) 0.0150 (12) 0.0192 (13) −0.0050 (10) 0.0078 (10) 0.0023 (10)
C19 0.0161 (13) 0.0224 (13) 0.0247 (14) −0.0059 (10) 0.0027 (11) 0.0011 (11)
C1A 0.0202 (14) 0.0263 (14) 0.0295 (15) −0.0002 (11) 0.0073 (12) 0.0036 (12)
C1B 0.0213 (15) 0.0355 (17) 0.049 (2) 0.0031 (13) 0.0057 (14) 0.0073 (15)
C21 0.0140 (12) 0.0115 (11) 0.0142 (11) −0.0002 (9) 0.0037 (9) 0.0002 (9)
C22 0.0114 (11) 0.0123 (11) 0.0103 (11) 0.0015 (9) 0.0025 (9) −0.0009 (9)
C23 0.0128 (12) 0.0144 (11) 0.0117 (11) 0.0016 (9) 0.0019 (9) −0.0013 (9)
C24 0.0150 (12) 0.0159 (12) 0.0147 (12) −0.0028 (10) 0.0021 (9) −0.0018 (9)
C25 0.0200 (13) 0.0190 (12) 0.0181 (13) −0.0030 (10) 0.0068 (10) 0.0010 (10)
C26 0.0248 (14) 0.0213 (13) 0.0117 (12) 0.0016 (11) 0.0021 (10) 0.0012 (10)
C27 0.0211 (13) 0.0195 (12) 0.0104 (12) −0.0013 (10) −0.0004 (10) −0.0002 (9)
C29 0.0164 (13) 0.0274 (14) 0.0201 (13) −0.0068 (11) −0.0017 (10) 0.0035 (11)
C28 0.0191 (13) 0.0158 (12) 0.0143 (12) −0.0063 (10) −0.0029 (10) 0.0010 (10)
C2A 0.0201 (14) 0.0242 (13) 0.0233 (14) −0.0033 (11) 0.0017 (11) −0.0019 (11)
C2B 0.0227 (15) 0.0338 (16) 0.0304 (16) 0.0012 (12) 0.0018 (12) −0.0054 (13)

Geometric parameters (Å, °)

Cu1—N23 1.9536 (19) C16—C17 1.377 (4)
Cu1—N13 1.994 (2) C16—H16 0.9500
Cu1—Br1 2.3563 (5) C17—H17 0.9500
Cu1—Br2 2.3608 (5) C18—C19 1.523 (4)
N11—C12 1.354 (3) C18—H18A 0.9900
N11—C11 1.390 (3) C18—H18B 0.9900
N11—C18 1.470 (3) C19—C1A 1.523 (4)
N13—C12 1.332 (3) C19—H19A 0.9900
N13—C13 1.400 (3) C19—H19B 0.9900
N21—C22 1.352 (3) C1A—C1B 1.522 (4)
N21—C21 1.391 (3) C1A—H1A1 0.9900
N21—C28 1.474 (3) C1A—H1A2 0.9900
N23—C22 1.325 (3) C1B—H1B1 0.9800
N23—C23 1.391 (3) C1B—H1B2 0.9800
C1—C22 1.500 (3) C1B—H1B3 0.9800
C1—C12 1.506 (3) C21—C27 1.394 (3)
C1—C2 1.554 (3) C21—C23 1.397 (3)
C1—H1 1.0000 C23—C24 1.395 (3)
C2—C3 1.522 (3) C24—C25 1.381 (3)
C2—H2A 0.9900 C24—H24 0.9500
C2—H2B 0.9900 C25—C26 1.403 (4)
C3—C4 1.527 (4) C25—H25 0.9500
C3—H3A 0.9900 C26—C27 1.384 (4)
C3—H3B 0.9900 C26—H26 0.9500
C4—C5 1.517 (4) C27—H27 0.9500
C4—H4A 0.9900 C29—C28 1.517 (4)
C4—H4B 0.9900 C29—C2A 1.519 (4)
C5—H5A 0.9800 C29—H29A 0.9900
C5—H5B 0.9800 C29—H29B 0.9900
C5—H5C 0.9800 C28—H28A 0.9900
C11—C17 1.390 (3) C28—H28B 0.9900
C11—C13 1.398 (3) C2A—C2B 1.526 (4)
C13—C14 1.396 (3) C2A—H2A1 0.9900
C14—C15 1.377 (3) C2A—H2A2 0.9900
C14—H14 0.9500 C2B—H2B1 0.9800
C15—C16 1.400 (4) C2B—H2B2 0.9800
C15—H15 0.9500 C2B—H2B3 0.9800
N23—Cu1—N13 90.44 (8) N11—C18—C19 113.6 (2)
N23—Cu1—Br1 130.64 (6) N11—C18—H18A 108.9
N13—Cu1—Br1 106.87 (6) C19—C18—H18A 108.9
N23—Cu1—Br2 98.49 (6) N11—C18—H18B 108.9
N13—Cu1—Br2 134.58 (6) C19—C18—H18B 108.9
Br1—Cu1—Br2 100.523 (16) H18A—C18—H18B 107.7
C12—N11—C11 107.27 (19) C18—C19—C1A 115.1 (2)
C12—N11—C18 127.7 (2) C18—C19—H19A 108.5
C11—N11—C18 125.0 (2) C1A—C19—H19A 108.5
C12—N13—C13 105.99 (19) C18—C19—H19B 108.5
C12—N13—Cu1 122.46 (16) C1A—C19—H19B 108.5
C13—N13—Cu1 131.53 (16) H19A—C19—H19B 107.5
C22—N21—C21 107.20 (19) C1B—C1A—C19 112.2 (2)
C22—N21—C28 127.3 (2) C1B—C1A—H1A1 109.2
C21—N21—C28 125.5 (2) C19—C1A—H1A1 109.2
C22—N23—C23 106.50 (19) C1B—C1A—H1A2 109.2
C22—N23—Cu1 125.43 (15) C19—C1A—H1A2 109.2
C23—N23—Cu1 127.91 (16) H1A1—C1A—H1A2 107.9
C22—C1—C12 110.63 (19) C1A—C1B—H1B1 109.5
C22—C1—C2 110.39 (19) C1A—C1B—H1B2 109.5
C12—C1—C2 107.92 (18) H1B1—C1B—H1B2 109.5
C22—C1—H1 109.3 C1A—C1B—H1B3 109.5
C12—C1—H1 109.3 H1B1—C1B—H1B3 109.5
C2—C1—H1 109.3 H1B2—C1B—H1B3 109.5
C3—C2—C1 114.4 (2) N21—C21—C27 132.1 (2)
C3—C2—H2A 108.7 N21—C21—C23 106.0 (2)
C1—C2—H2A 108.7 C27—C21—C23 121.9 (2)
C3—C2—H2B 108.7 N23—C22—N21 111.9 (2)
C1—C2—H2B 108.7 N23—C22—C1 122.2 (2)
H2A—C2—H2B 107.6 N21—C22—C1 125.8 (2)
C2—C3—C4 112.0 (2) N23—C23—C24 130.3 (2)
C2—C3—H3A 109.2 N23—C23—C21 108.4 (2)
C4—C3—H3A 109.2 C24—C23—C21 121.3 (2)
C2—C3—H3B 109.2 C25—C24—C23 117.0 (2)
C4—C3—H3B 109.2 C25—C24—H24 121.5
H3A—C3—H3B 107.9 C23—C24—H24 121.5
C5—C4—C3 114.3 (2) C24—C25—C26 121.3 (2)
C5—C4—H4A 108.7 C24—C25—H25 119.3
C3—C4—H4A 108.7 C26—C25—H25 119.3
C5—C4—H4B 108.7 C27—C26—C25 122.2 (2)
C3—C4—H4B 108.7 C27—C26—H26 118.9
H4A—C4—H4B 107.6 C25—C26—H26 118.9
C4—C5—H5A 109.5 C26—C27—C21 116.2 (2)
C4—C5—H5B 109.5 C26—C27—H27 121.9
H5A—C5—H5B 109.5 C21—C27—H27 121.9
C4—C5—H5C 109.5 C28—C29—C2A 115.0 (2)
H5A—C5—H5C 109.5 C28—C29—H29A 108.5
H5B—C5—H5C 109.5 C2A—C29—H29A 108.5
C17—C11—N11 131.2 (2) C28—C29—H29B 108.5
C17—C11—C13 122.6 (2) C2A—C29—H29B 108.5
N11—C11—C13 106.2 (2) H29A—C29—H29B 107.5
N13—C12—N11 112.1 (2) N21—C28—C29 112.9 (2)
N13—C12—C1 124.0 (2) N21—C28—H28A 109.0
N11—C12—C1 123.6 (2) C29—C28—H28A 109.0
C14—C13—C11 120.3 (2) N21—C28—H28B 109.0
C14—C13—N13 131.2 (2) C29—C28—H28B 109.0
C11—C13—N13 108.5 (2) H28A—C28—H28B 107.8
C15—C14—C13 117.2 (2) C29—C2A—C2B 112.2 (2)
C15—C14—H14 121.4 C29—C2A—H2A1 109.2
C13—C14—H14 121.4 C2B—C2A—H2A1 109.2
C14—C15—C16 121.8 (2) C29—C2A—H2A2 109.2
C14—C15—H15 119.1 C2B—C2A—H2A2 109.2
C16—C15—H15 119.1 H2A1—C2A—H2A2 107.9
C17—C16—C15 121.9 (2) C2A—C2B—H2B1 109.5
C17—C16—H16 119.1 C2A—C2B—H2B2 109.5
C15—C16—H16 119.1 H2B1—C2B—H2B2 109.5
C16—C17—C11 116.3 (2) C2A—C2B—H2B3 109.5
C16—C17—H17 121.9 H2B1—C2B—H2B3 109.5
C11—C17—H17 121.9 H2B2—C2B—H2B3 109.5
N23—Cu1—N13—C12 −27.22 (18) C14—C15—C16—C17 0.0 (4)
Br1—Cu1—N13—C12 −160.30 (16) C15—C16—C17—C11 0.1 (4)
Br2—Cu1—N13—C12 75.19 (19) N11—C11—C17—C16 −176.7 (3)
N23—Cu1—N13—C13 154.6 (2) C13—C11—C17—C16 −0.1 (4)
Br1—Cu1—N13—C13 21.6 (2) C12—N11—C18—C19 91.0 (3)
Br2—Cu1—N13—C13 −102.9 (2) C11—N11—C18—C19 −91.9 (3)
N13—Cu1—N23—C22 26.70 (19) N11—C18—C19—C1A 70.4 (3)
Br1—Cu1—N23—C22 139.59 (16) C18—C19—C1A—C1B −178.6 (2)
Br2—Cu1—N23—C22 −108.60 (18) C22—N21—C21—C27 178.3 (3)
N13—Cu1—N23—C23 −147.9 (2) C28—N21—C21—C27 −1.4 (4)
Br1—Cu1—N23—C23 −35.1 (2) C22—N21—C21—C23 −1.1 (3)
Br2—Cu1—N23—C23 76.75 (19) C28—N21—C21—C23 179.1 (2)
C22—C1—C2—C3 56.9 (3) C23—N23—C22—N21 −0.7 (3)
C12—C1—C2—C3 178.0 (2) Cu1—N23—C22—N21 −176.26 (15)
C1—C2—C3—C4 −168.1 (2) C23—N23—C22—C1 −177.4 (2)
C2—C3—C4—C5 −56.2 (3) Cu1—N23—C22—C1 7.0 (3)
C12—N11—C11—C17 177.0 (3) C21—N21—C22—N23 1.1 (3)
C18—N11—C11—C17 −0.6 (4) C28—N21—C22—N23 −179.1 (2)
C12—N11—C11—C13 −0.1 (3) C21—N21—C22—C1 177.7 (2)
C18—N11—C11—C13 −177.6 (2) C28—N21—C22—C1 −2.5 (4)
C13—N13—C12—N11 −0.2 (3) C12—C1—C22—N23 −47.6 (3)
Cu1—N13—C12—N11 −178.77 (15) C2—C1—C22—N23 71.8 (3)
C13—N13—C12—C1 173.4 (2) C12—C1—C22—N21 136.1 (2)
Cu1—N13—C12—C1 −5.2 (3) C2—C1—C22—N21 −104.5 (3)
C11—N11—C12—N13 0.2 (3) C22—N23—C23—C24 −179.5 (2)
C18—N11—C12—N13 177.7 (2) Cu1—N23—C23—C24 −4.1 (4)
C11—N11—C12—C1 −173.5 (2) C22—N23—C23—C21 −0.1 (3)
C18—N11—C12—C1 4.0 (4) Cu1—N23—C23—C21 175.39 (16)
C22—C1—C12—N13 46.7 (3) N21—C21—C23—N23 0.7 (3)
C2—C1—C12—N13 −74.2 (3) C27—C21—C23—N23 −178.8 (2)
C22—C1—C12—N11 −140.4 (2) N21—C21—C23—C24 −179.7 (2)
C2—C1—C12—N11 98.7 (3) C27—C21—C23—C24 0.7 (4)
C17—C11—C13—C14 −0.1 (4) N23—C23—C24—C25 178.5 (2)
N11—C11—C13—C14 177.3 (2) C21—C23—C24—C25 −1.0 (4)
C17—C11—C13—N13 −177.5 (2) C23—C24—C25—C26 0.3 (4)
N11—C11—C13—N13 −0.1 (3) C24—C25—C26—C27 0.5 (4)
C12—N13—C13—C14 −176.8 (2) C25—C26—C27—C21 −0.7 (4)
Cu1—N13—C13—C14 1.6 (4) N21—C21—C27—C26 −179.3 (2)
C12—N13—C13—C11 0.2 (3) C23—C21—C27—C26 0.1 (4)
Cu1—N13—C13—C11 178.54 (16) C22—N21—C28—C29 −83.8 (3)
C11—C13—C14—C15 0.2 (3) C21—N21—C28—C29 95.9 (3)
N13—C13—C14—C15 176.9 (2) C2A—C29—C28—N21 −61.6 (3)
C13—C14—C15—C16 −0.2 (4) C28—C29—C2A—C2B −179.3 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N11/C11/C13/N13/C12 ring.
D—H···A D—H H···A D···A D—H···A
C14—H14···Br1 0.95 2.79 3.551 (3) 138
C17—H17···Br2i 0.95 2.90 3.606 (3) 132
C18—H18A···Br1ii 0.99 2.86 3.741 (3) 148
C5—H5B···Cg1iii 0.98 2.87 3.631 (3) 135
C2B—H2B1···Cg1iv 0.98 2.82 3.777 (3) 165

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5058).

References

  1. Bruker (2000). SAINT-Plus, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Hou, J.-J., Guo, C.-H. & Zhang, X.-M. (2006). Inorg. Chim. Acta, 359, 3991–3995.
  5. Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc.112, 3452–3464.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Stibrany, R. T. (2009). J. Chem. Crystallogr.39, 719–722.
  8. Stibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem.43, 1472–1480. [DOI] [PubMed]
  9. Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2005). Acta Cryst. E61, m1991–m1994. [DOI] [PubMed]
  10. Stibrany, R. T. & Potenza, J. A. (2006). Acta Cryst. E62, m3425–m3428.
  11. Stibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213–m216. [DOI] [PubMed]
  12. Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142–o1144.
  13. Stibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584–8586.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002088X/lh5058sup1.cif

e-66-0m767-sup1.cif (26.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002088X/lh5058Isup2.hkl

e-66-0m767-Isup2.hkl (264.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES