Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 10;66(Pt 8):o1989. doi: 10.1107/S1600536810026796

4-Bromo-N-cyclo­hexyl­benzene­sulfonamide

Peter John a, Faiza Anwar a, Islam Ullah Khan a,, Shahzad Sharif a, Edward R T Tiekink b,*
PMCID: PMC3007228  PMID: 21588304

Abstract

The title compound, C12H16BrNO2S, adopts an L-shaped conformation with the central C—S—N—C torsion angle being −77.8 (3)°. The crystal packing features N—H⋯O hydrogen bonds, which lead to C(4) chains propagating in [010]; the second O atom is involved in short intra­molecular C—H⋯O contacts.

Related literature

For related structures and background information on sulfon­amides, see: Khan et al. (2010); Sharif et al. (2010).graphic file with name e-66-o1989-scheme1.jpg

Experimental

Crystal data

  • C12H16BrNO2S

  • M r = 318.24

  • Monoclinic, Inline graphic

  • a = 11.2539 (5) Å

  • b = 6.2575 (3) Å

  • c = 19.9743 (10) Å

  • β = 97.214 (3)°

  • V = 1395.48 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.09 mm−1

  • T = 293 K

  • 0.24 × 0.12 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.218, T max = 0.529

  • 12505 measured reflections

  • 3199 independent reflections

  • 1620 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.132

  • S = 1.01

  • 3199 reflections

  • 157 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026796/hb5542sup1.cif

e-66-o1989-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026796/hb5542Isup2.hkl

e-66-o1989-Isup2.hkl (153.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen bonds and short intramolecular contacts (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.93 2.53 2.903 (4) 104
C7—H7⋯O2 0.98 2.54 2.992 (4) 108
N1—H1n⋯O1i 0.88 (3) 2.03 (3) 2.898 (4) 169 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to Mr Munawar Hussain, Engineering Cell GC University, Lahore, for providing support services to the Materials Chemistry Laboratory.

supplementary crystallographic information

Comment

The title sulfonamide has been prepared as a part of on-going structural studies of such compounds (Khan et al., 2010; Sharif et al., 2010).

Overall, the molecule in (I), Fig. 1, has an L-shaped conformation. This is best quantified in the C1–S1–N1–C7 torsion angle of -77.8 (3) °. When viewed down the spine of the benzene ring, the cyclohexyl group, with a regular chain conformation, appears almost side-on. With respect to the plane through the benzene ring, the O2 atom is roughly co-planar [the C2–C1–S1–O2 torsion angle is 18.8 (4) °]. By contrast, the O1 and N1 atoms lie to either side [C2–C1–S1–O1 = -109.1 (3) ° and C2–C11–S1–N1 = 136.8 (3) °]. This conformation allows for the formation of two intramolecular C–H···O2 short contacts and it is not surprising that the O2 atom does not participate in significant intermolecular interactions. Supramolecular chains along the b axis are found in the crystal structure. These are mediated by N–H···O1 hydrogen bonding, Fig. 2 and Table 1.

Experimental

To 4-bromobenzene sulfonylchloride (499 mg, 1.96 mmol) in distilled water (10 ml), was added cyclohexylamine (225 ml, 1.96 mmol) with continuous stirring at room temperature. The pH of the reaction mixture was maintained at 8 using a 3% sodium carbonate solution. The progress of the reaction was monitored by TLC. After the consumption of all the reactants, the precipitates were filtered, dried and crystallized using ethyl acetate to yield colourless prisms of (I), m.pt. 375 K.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was refined with the distance restraint N–H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N). In the final refinement two low angle reflections evidently effected by the beam stop were omitted, i.e. 1 0 0 and 0 0 2.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular chain along the b axis in (I) mediated by N–H···O hydrogen bonding (orange dashed lines) in (I). Colour code: Br, olive; S, yellow; O, red; N, blue; C, grey; and H, green.

Crystal data

C12H16BrNO2S F(000) = 648
Mr = 318.24 Dx = 1.515 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2185 reflections
a = 11.2539 (5) Å θ = 2.6–20.1°
b = 6.2575 (3) Å µ = 3.09 mm1
c = 19.9743 (10) Å T = 293 K
β = 97.214 (3)° Prism, colourless
V = 1395.48 (11) Å3 0.24 × 0.12 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3199 independent reflections
Radiation source: fine-focus sealed tube 1620 reflections with I > 2σ(I)
graphite Rint = 0.048
φ and ω scans θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.218, Tmax = 0.529 k = −7→8
12505 measured reflections l = −25→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.4435P] where P = (Fo2 + 2Fc2)/3
3199 reflections (Δ/σ)max < 0.001
157 parameters Δρmax = 0.52 e Å3
1 restraint Δρmin = −0.46 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.03064 (5) 1.13493 (9) 0.90414 (3) 0.1022 (3)
S1 0.32555 (8) 0.51051 (14) 0.73331 (5) 0.0523 (3)
O1 0.4205 (2) 0.4370 (4) 0.78229 (16) 0.0763 (9)
O2 0.2437 (2) 0.3587 (3) 0.70013 (15) 0.0685 (8)
N1 0.3875 (3) 0.6368 (4) 0.67782 (17) 0.0497 (8)
H1N 0.450 (2) 0.714 (5) 0.6936 (17) 0.060*
C1 0.2414 (3) 0.6900 (5) 0.77706 (17) 0.0435 (8)
C2 0.1289 (3) 0.6312 (6) 0.7906 (2) 0.0584 (10)
H2 0.0958 0.5019 0.7746 0.070*
C3 0.0658 (3) 0.7644 (7) 0.8278 (2) 0.0660 (11)
H3 −0.0102 0.7259 0.8372 0.079*
C4 0.1155 (3) 0.9538 (6) 0.8508 (2) 0.0582 (10)
C5 0.2265 (4) 1.0149 (6) 0.8369 (2) 0.0597 (10)
H5 0.2586 1.1454 0.8524 0.072*
C6 0.2899 (3) 0.8824 (6) 0.8000 (2) 0.0555 (10)
H6 0.3655 0.9223 0.7904 0.067*
C7 0.3239 (3) 0.7049 (5) 0.61271 (19) 0.0515 (9)
H7 0.2584 0.6039 0.6000 0.062*
C8 0.4105 (5) 0.6910 (9) 0.5601 (3) 0.0944 (16)
H8A 0.4799 0.7797 0.5739 0.113*
H8B 0.4376 0.5446 0.5569 0.113*
C9 0.3511 (6) 0.7641 (13) 0.4915 (3) 0.121 (2)
H9A 0.4100 0.7639 0.4599 0.146*
H9B 0.2886 0.6634 0.4751 0.146*
C10 0.2986 (5) 0.9797 (11) 0.4935 (3) 0.1082 (19)
H10A 0.2572 1.0147 0.4493 0.130*
H10B 0.3623 1.0833 0.5043 0.130*
C11 0.2126 (5) 0.9940 (9) 0.5448 (3) 0.1004 (17)
H11A 0.1436 0.9042 0.5310 0.121*
H11B 0.1848 1.1402 0.5474 0.121*
C12 0.2716 (4) 0.9235 (7) 0.6137 (2) 0.0770 (13)
H12A 0.3344 1.0241 0.6297 0.092*
H12B 0.2126 0.9260 0.6452 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0808 (4) 0.1222 (5) 0.1086 (5) 0.0104 (3) 0.0315 (3) −0.0430 (3)
S1 0.0472 (5) 0.0401 (5) 0.0703 (7) 0.0070 (4) 0.0101 (5) 0.0059 (5)
O1 0.0616 (17) 0.0779 (19) 0.088 (2) 0.0278 (15) 0.0053 (16) 0.0236 (16)
O2 0.0717 (18) 0.0390 (14) 0.098 (2) −0.0085 (13) 0.0227 (17) −0.0093 (13)
N1 0.0382 (16) 0.0525 (18) 0.058 (2) −0.0045 (13) 0.0052 (15) −0.0051 (15)
C1 0.0385 (19) 0.0442 (19) 0.047 (2) 0.0044 (16) 0.0015 (16) 0.0099 (16)
C2 0.043 (2) 0.052 (2) 0.079 (3) −0.0051 (18) 0.003 (2) −0.003 (2)
C3 0.040 (2) 0.076 (3) 0.083 (3) 0.001 (2) 0.010 (2) 0.001 (2)
C4 0.052 (2) 0.070 (3) 0.053 (3) 0.012 (2) 0.0077 (19) −0.006 (2)
C5 0.065 (2) 0.058 (2) 0.058 (3) −0.007 (2) 0.014 (2) −0.007 (2)
C6 0.050 (2) 0.057 (2) 0.062 (3) −0.0101 (18) 0.0186 (19) −0.0018 (19)
C7 0.044 (2) 0.051 (2) 0.059 (3) −0.0072 (17) 0.0042 (19) −0.0070 (18)
C8 0.098 (4) 0.127 (4) 0.062 (3) 0.026 (3) 0.024 (3) −0.016 (3)
C9 0.118 (5) 0.192 (7) 0.057 (4) 0.009 (5) 0.024 (3) −0.018 (4)
C10 0.083 (4) 0.158 (6) 0.084 (4) −0.013 (4) 0.012 (3) 0.046 (4)
C11 0.104 (4) 0.113 (4) 0.085 (4) 0.023 (3) 0.015 (3) 0.034 (3)
C12 0.095 (3) 0.071 (3) 0.066 (3) 0.021 (2) 0.016 (3) 0.008 (2)

Geometric parameters (Å, °)

Br1—C4 1.893 (4) C7—C12 1.490 (5)
S1—O2 1.427 (3) C7—C8 1.523 (5)
S1—O1 1.431 (3) C7—H7 0.9800
S1—N1 1.591 (3) C8—C9 1.518 (8)
S1—C1 1.769 (3) C8—H8A 0.9700
N1—C7 1.467 (5) C8—H8B 0.9700
N1—H1N 0.88 (3) C9—C10 1.475 (8)
C1—C6 1.376 (5) C9—H9A 0.9700
C1—C2 1.378 (5) C9—H9B 0.9700
C2—C3 1.372 (5) C10—C11 1.499 (7)
C2—H2 0.9300 C10—H10A 0.9700
C3—C4 1.366 (6) C10—H10B 0.9700
C3—H3 0.9300 C11—C12 1.517 (6)
C4—C5 1.369 (5) C11—H11A 0.9700
C5—C6 1.368 (5) C11—H11B 0.9700
C5—H5 0.9300 C12—H12A 0.9700
C6—H6 0.9300 C12—H12B 0.9700
O2—S1—O1 119.11 (17) C8—C7—H7 108.1
O2—S1—N1 108.71 (17) C9—C8—C7 111.0 (4)
O1—S1—N1 106.31 (17) C9—C8—H8A 109.4
O2—S1—C1 107.33 (16) C7—C8—H8A 109.4
O1—S1—C1 105.45 (17) C9—C8—H8B 109.4
N1—S1—C1 109.69 (15) C7—C8—H8B 109.4
C7—N1—S1 123.6 (2) H8A—C8—H8B 108.0
C7—N1—H1N 116 (2) C10—C9—C8 112.5 (5)
S1—N1—H1N 115 (2) C10—C9—H9A 109.1
C6—C1—C2 120.3 (3) C8—C9—H9A 109.1
C6—C1—S1 120.4 (3) C10—C9—H9B 109.1
C2—C1—S1 119.3 (3) C8—C9—H9B 109.1
C3—C2—C1 119.7 (3) H9A—C9—H9B 107.8
C3—C2—H2 120.2 C9—C10—C11 111.6 (5)
C1—C2—H2 120.2 C9—C10—H10A 109.3
C2—C3—C4 119.5 (4) C11—C10—H10A 109.3
C2—C3—H3 120.3 C9—C10—H10B 109.3
C4—C3—H3 120.3 C11—C10—H10B 109.3
C5—C4—C3 121.3 (4) H10A—C10—H10B 108.0
C5—C4—Br1 119.0 (3) C10—C11—C12 110.9 (4)
C3—C4—Br1 119.7 (3) C10—C11—H11A 109.5
C6—C5—C4 119.4 (4) C12—C11—H11A 109.5
C6—C5—H5 120.3 C10—C11—H11B 109.5
C4—C5—H5 120.3 C12—C11—H11B 109.5
C5—C6—C1 119.9 (3) H11A—C11—H11B 108.0
C5—C6—H6 120.1 C7—C12—C11 112.5 (4)
C1—C6—H6 120.1 C7—C12—H12A 109.1
N1—C7—C12 113.8 (3) C11—C12—H12A 109.1
N1—C7—C8 108.2 (3) C7—C12—H12B 109.1
C12—C7—C8 110.5 (4) C11—C12—H12B 109.1
N1—C7—H7 108.1 H12A—C12—H12B 107.8
C12—C7—H7 108.1
O2—S1—N1—C7 39.2 (3) Br1—C4—C5—C6 178.2 (3)
O1—S1—N1—C7 168.6 (3) C4—C5—C6—C1 0.3 (6)
C1—S1—N1—C7 −77.8 (3) C2—C1—C6—C5 0.6 (6)
O2—S1—C1—C6 −164.1 (3) S1—C1—C6—C5 −176.5 (3)
O1—S1—C1—C6 68.0 (3) S1—N1—C7—C12 91.1 (4)
N1—S1—C1—C6 −46.1 (3) S1—N1—C7—C8 −145.7 (3)
O2—S1—C1—C2 18.8 (4) N1—C7—C8—C9 −178.8 (4)
O1—S1—C1—C2 −109.1 (3) C12—C7—C8—C9 −53.5 (6)
N1—S1—C1—C2 136.8 (3) C7—C8—C9—C10 54.4 (7)
C6—C1—C2—C3 −0.8 (6) C8—C9—C10—C11 −55.0 (7)
S1—C1—C2—C3 176.3 (3) C9—C10—C11—C12 54.5 (7)
C1—C2—C3—C4 0.1 (6) N1—C7—C12—C11 176.7 (4)
C2—C3—C4—C5 0.8 (7) C8—C7—C12—C11 54.8 (5)
C2—C3—C4—Br1 −178.4 (3) C10—C11—C12—C7 −55.3 (6)
C3—C4—C5—C6 −1.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O2 0.93 2.53 2.903 (4) 104
C7—H7···O2 0.98 2.54 2.992 (4) 108
N1—H1n···O1i 0.88 (3) 2.03 (3) 2.898 (4) 169 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5542).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Khan, I. U., Javaid, R., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1687. [DOI] [PMC free article] [PubMed]
  5. Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026796/hb5542sup1.cif

e-66-o1989-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026796/hb5542Isup2.hkl

e-66-o1989-Isup2.hkl (153.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES