Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 7;66(Pt 8):o1940. doi: 10.1107/S1600536810026024

Propane-1,3-diyl bis­(4-amino­benzoate)

Muhammad Raza Shah a, Seik Weng Ng b,*
PMCID: PMC3007263  PMID: 21588266

Abstract

Mol­ecules of the title compound, C17H18N2O4, lie on a twofold rotation axis that passes through the central methyl­ene C atom. The mol­ecules adopt a ‘V’ shape and the trimethyl­ene unit assumes a gauchegauche conformation. The amino N atom shows a nonplanar coordination. Adjacent mol­ecules are connected by N—H⋯O hydrogen bonds into chains running along [001]. Furthermore, N—H⋯N hydrogen bonds connect these chains into a three-dimensional network.

Related literature

For the crystal structure of 1,3-propandiyl-bis­(benzoate), see: Pérez & Brisse (1977).graphic file with name e-66-o1940-scheme1.jpg

Experimental

Crystal data

  • C17H18N2O4

  • M r = 314.33

  • Monoclinic, Inline graphic

  • a = 23.725 (5) Å

  • b = 4.5109 (9) Å

  • c = 8.2171 (17) Å

  • β = 107.173 (3)°

  • V = 840.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.35 × 0.02 mm

Data collection

  • Bruker SMART APEX diffractometer

  • 3936 measured reflections

  • 1082 independent reflections

  • 788 reflections with I > 2σ(I)

  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.109

  • S = 0.96

  • 1082 reflections

  • 113 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026024/bt5289sup1.cif

e-66-o1940-sup1.cif (13.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026024/bt5289Isup2.hkl

e-66-o1940-Isup2.hkl (53.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O2i 0.86 (1) 2.15 (2) 2.958 (3) 157 (5)
N1—H12⋯N1ii 0.86 (1) 2.25 (1) 3.104 (3) 169 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The chemical is a commercially available chemical that should be compable of condensing with carbonyl compounds to yield Schff bases; its special feature is its trimethylene portion, which assumes a V shape. The C17H18N2O4 molecule (Scheme I) lies on a twofold rotation axis that passes through the central methylene carbon atom; this symmetry element relates one 4-aminobenzoate unit to the other. The molecule assumes a V shape and the trimethylene portion assumes a gauchegauche conformation. The amino nitrogen atom shows non-planar coordination (Fig. 1). Adjacent molecules are connected by N–H···O and N–H···N shydrogen bonds to form a three-dimensional network.

Experimental

The compound was returned unchanged but in a crystalline form in an unsuccessful condensation with o-vanillin in ethanol medium.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95–0.99 Å, U(H) 1.2U(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of N–H 0.86±0.01 Å. 822 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C17H18N2O4 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C17H18N2O4 F(000) = 332
Mr = 314.33 Dx = 1.242 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2y Cell parameters from 915 reflections
a = 23.725 (5) Å θ = 2.6–26.8°
b = 4.5109 (9) Å µ = 0.09 mm1
c = 8.2171 (17) Å T = 100 K
β = 107.173 (3)° Plate, yellow
V = 840.2 (3) Å3 0.35 × 0.35 × 0.02 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer 788 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.090
graphite θmax = 27.5°, θmin = 1.8°
ω scans h = −30→29
3936 measured reflections k = −5→5
1082 independent reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0523P)2] where P = (Fo2 + 2Fc2)/3
1082 reflections (Δ/σ)max = 0.001
113 parameters Δρmax = 0.24 e Å3
3 restraints Δρmin = −0.24 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.42724 (7) 0.4987 (4) 0.0488 (2) 0.0262 (5)
O2 0.35969 (8) 0.7580 (5) −0.1476 (2) 0.0304 (5)
N1 0.29701 (11) 1.0783 (6) 0.5367 (3) 0.0298 (6)
C1 0.5000 0.1862 (10) 0.0000 0.0279 (10)
H1A 0.5095 0.0569 −0.0857 0.033* 0.50
H1B 0.4905 0.0569 0.0857 0.033* 0.50
C2 0.44676 (11) 0.3705 (7) −0.0862 (3) 0.0263 (7)
H2A 0.4572 0.5279 −0.1562 0.032*
H2B 0.4153 0.2454 −0.1609 0.032*
C3 0.38135 (11) 0.6876 (7) 0.0010 (3) 0.0244 (7)
C4 0.36179 (11) 0.7924 (7) 0.1432 (3) 0.0228 (6)
C5 0.31600 (11) 0.9969 (7) 0.1134 (3) 0.0260 (7)
H5 0.2991 1.0721 0.0016 0.031*
C6 0.29486 (12) 1.0917 (7) 0.2423 (3) 0.0286 (7)
H6 0.2631 1.2289 0.2187 0.034*
C7 0.31969 (11) 0.9879 (7) 0.4094 (3) 0.0252 (7)
C8 0.36569 (11) 0.7851 (8) 0.4393 (3) 0.0295 (7)
H8 0.3830 0.7123 0.5514 0.035*
C9 0.38646 (11) 0.6885 (8) 0.3103 (3) 0.0282 (7)
H9 0.4179 0.5495 0.3338 0.034*
H11 0.3137 (17) 1.032 (12) 0.641 (2) 0.098 (16)*
H12 0.2748 (10) 1.233 (4) 0.519 (3) 0.025 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0204 (9) 0.0351 (12) 0.0206 (9) 0.0041 (10) 0.0021 (7) 0.0031 (9)
O2 0.0239 (10) 0.0453 (13) 0.0165 (9) 0.0042 (10) −0.0024 (7) 0.0029 (10)
N1 0.0272 (14) 0.0364 (17) 0.0227 (13) 0.0056 (12) 0.0025 (11) 0.0016 (12)
C1 0.021 (2) 0.030 (3) 0.029 (2) 0.000 0.0034 (16) 0.000
C2 0.0205 (13) 0.0329 (17) 0.0243 (14) −0.0040 (13) 0.0046 (11) −0.0024 (13)
C3 0.0172 (13) 0.0302 (17) 0.0224 (13) −0.0048 (13) 0.0005 (11) 0.0009 (13)
C4 0.0163 (12) 0.0304 (17) 0.0183 (12) −0.0025 (12) −0.0001 (10) 0.0023 (11)
C5 0.0190 (13) 0.0322 (17) 0.0193 (13) −0.0007 (14) −0.0058 (11) 0.0043 (13)
C6 0.0191 (14) 0.0368 (19) 0.0236 (14) 0.0029 (13) −0.0031 (12) 0.0038 (13)
C7 0.0186 (13) 0.0335 (18) 0.0202 (13) −0.0060 (14) 0.0006 (10) 0.0005 (13)
C8 0.0218 (14) 0.043 (2) 0.0179 (13) 0.0039 (14) −0.0026 (11) 0.0090 (14)
C9 0.0181 (14) 0.0397 (19) 0.0237 (14) 0.0030 (14) 0.0012 (11) 0.0050 (14)

Geometric parameters (Å, °)

O1—C3 1.347 (3) C3—C4 1.457 (4)
O1—C2 1.444 (3) C4—C5 1.391 (4)
O2—C3 1.219 (3) C4—C9 1.405 (3)
N1—C7 1.372 (3) C5—C6 1.368 (4)
N1—H11 0.858 (10) C5—H5 0.9500
N1—H12 0.861 (10) C6—C7 1.405 (4)
C1—C2 1.503 (4) C6—H6 0.9500
C1—C2i 1.503 (4) C7—C8 1.389 (4)
C1—H1A 0.9900 C8—C9 1.365 (4)
C1—H1B 0.9900 C8—H8 0.9500
C2—H2A 0.9900 C9—H9 0.9500
C2—H2B 0.9900
C3—O1—C2 116.39 (19) C5—C4—C9 118.1 (2)
C7—N1—H11 121 (3) C5—C4—C3 119.4 (2)
C7—N1—H12 118.1 (19) C9—C4—C3 122.4 (2)
H11—N1—H12 116 (4) C6—C5—C4 121.1 (2)
C2—C1—C2i 112.9 (4) C6—C5—H5 119.4
C2—C1—H1A 109.0 C4—C5—H5 119.4
C2i—C1—H1A 109.0 C5—C6—C7 120.6 (3)
C2—C1—H1B 109.0 C5—C6—H6 119.7
C2i—C1—H1B 109.0 C7—C6—H6 119.7
H1A—C1—H1B 107.8 N1—C7—C8 121.7 (2)
O1—C2—C1 105.94 (18) N1—C7—C6 120.0 (3)
O1—C2—H2A 110.5 C8—C7—C6 118.2 (2)
C1—C2—H2A 110.5 C9—C8—C7 121.2 (3)
O1—C2—H2B 110.5 C9—C8—H8 119.4
C1—C2—H2B 110.5 C7—C8—H8 119.4
H2A—C2—H2B 108.7 C8—C9—C4 120.7 (3)
O2—C3—O1 121.5 (2) C8—C9—H9 119.7
O2—C3—C4 125.4 (3) C4—C9—H9 119.7
O1—C3—C4 113.1 (2)
C3—O1—C2—C1 176.5 (2) C3—C4—C5—C6 177.4 (3)
C2i—C1—C2—O1 −71.92 (18) C4—C5—C6—C7 1.1 (4)
C2—O1—C3—O2 −3.8 (4) C5—C6—C7—N1 −178.2 (3)
C2—O1—C3—C4 176.2 (2) C5—C6—C7—C8 −0.6 (4)
O2—C3—C4—C5 −2.2 (4) N1—C7—C8—C9 177.6 (3)
O1—C3—C4—C5 177.8 (3) C6—C7—C8—C9 0.1 (5)
O2—C3—C4—C9 176.1 (3) C7—C8—C9—C4 0.1 (5)
O1—C3—C4—C9 −4.0 (4) C5—C4—C9—C8 0.3 (4)
C9—C4—C5—C6 −0.9 (4) C3—C4—C9—C8 −177.9 (3)

Symmetry codes: (i) −x+1, y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H11···O2ii 0.86 (1) 2.15 (2) 2.958 (3) 157 (5)
N1—H12···N1iii 0.86 (1) 2.25 (1) 3.104 (3) 169 (2)

Symmetry codes: (ii) x, y, z+1; (iii) −x+1/2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5289).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Pérez, S. & Brisse, F. (1977). Acta Cryst. B33, 3259–3262.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026024/bt5289sup1.cif

e-66-o1940-sup1.cif (13.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026024/bt5289Isup2.hkl

e-66-o1940-Isup2.hkl (53.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES