Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 10;66(Pt 8):o1971–o1972. doi: 10.1107/S1600536810026528

tert-Butyl 6-bromo-1,4-dimethyl-9H-carbazole-9-carboxyl­ate

Jean-François Lohier a,*, Anna Caruso b, Jana Sopková-de Oliveira Santos b, Jean-Charles Lancelot b, Sylvain Rault b
PMCID: PMC3007274  PMID: 21588291

Abstract

The title compound, C19H20BrNO2, consists of a carbazole skeleton with methyl groups at positions 1 and 4, a protecting group located at the N atom and a Br atom at position 6. The pyrrole ring is oriented at dihedral angles of 1.27 (7) and 4.86 (7)° with respect to the adjacent benzene rings. The dihedral angle between the benzene rings is 5.11 (7). The crystal structure is determined mainly by intra­molecular C—H⋯O and inter­molecular π–π inter­actions. π-stacking between adjacent molecules forms columns with a parallel arrangement of the carbazole ring systems. The presence of the tert-but­oxy­carbonyl group on the carbazole N atom and the intra­molecular hydrogen bond induce a particular conformation of the exocyclic N—C bond within the mol­ecule.

Related literature

For the pharmaceutical properties of carbazole derivatives, see: Itoigawa et al. (2000); Laronze et al. (2005); Thevissen et al. (2009). For their electroactivity and luminescent properties, see: Grazulevicius et al. (2003) and for their their applications in the light-emitting field, see: Zhang et al. (2006). For the synthesis of carbazoles and ellipticine derivatives, see: Ergün et al. (1998); Knölker et al. (2002); Liu et al. (2007). For related structures, see: Caruso et al. (2007); Sopková-de Oliveira Santos et al. (2008). For bond-length data, see: Allen et al. (1987). The title compound constitutes a cheap and reactive inter­mediate for the preparation of new analogs of the anti­cancer agent 9-meth­oxy­ellipticine, see: Le Pecq et al. (1974). A lengthening of N—C bond lengths due to the presence of a protecting group has been observed in similar compounds, see: Back et al. (2001); Chakkaravarthi et al. (2009); Terpin et al. (1998) For N-sulfonyl carbazole derivatives with similar conformations, see: Chakkaravarthi et al. (2008). For non N-atom-substituted analogs, see: Viossat et al. (1988).graphic file with name e-66-o1971-scheme1.jpg

Experimental

Crystal data

  • C19H20BrNO2

  • M r = 374.27

  • Triclinic, Inline graphic

  • a = 7.521 (4) Å

  • b = 9.715 (5) Å

  • c = 11.930 (6) Å

  • α = 91.10 (4)°

  • β = 96.40 (4)°

  • γ = 90.96 (4)°

  • V = 865.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 291 K

  • 0.46 × 0.37 × 0.34 mm

Data collection

  • Bruker–Nonius APEXII KappaCCD diffractometer

  • Absorption correction: numerical (SAINT; Bruker, 2007) T min = 0.378, T max = 0.429

  • 37091 measured reflections

  • 5718 independent reflections

  • 4268 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.092

  • S = 1.02

  • 5718 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026528/om2338sup1.cif

e-66-o1971-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026528/om2338Isup2.hkl

e-66-o1971-Isup2.hkl (279.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2 0.93 2.33 2.863 (3) 116

Table 2. π–π inter­actions (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the N9–C9A–C4A–C5A–C8A, C9A–C1–C2–C3–C4–C4A and C5A–C5–C6–C7–C8–C8A rings, respectively, ccd is the distance between ring centroids, sa is the mean slippage angle (angle subtended by the inter­centroid vector to the plane normal) and ipd is the mean inter­planar distance (distance from one plane to the neighbouring centroid). For details, see Janiak (2000).

Group 1/group 2 ccd sa ipd
Cg2/Cg3i 3.755 (2) 24 3.532 (1)
Cg3/Cg2i 3.755 (2) 20 3.433 (1)
Cg1/Cg1i 3.927 (2) 22 3.638 (1)
Cg2/Cg3ii 3.811 (2) 18 3.654 (1)
Cg3/Cg2ii 3.811 (2) 16 3.626 (1)
Cg1/Cg1ii 4.199 (2) 32 3.578 (1)

Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) −x, −y, −z + 1.

supplementary crystallographic information

Comment

Over the past few years, large interest has been observed in chemistry of carbazole derivatives since they can be widely used as organic materials due to their electroactivity and luminescent properties (Grazulevicius et al., 2003) or their applications in the light-emitting field (Zhang et al., 2006). This class of compounds also displays various pharmacological activities such as, among others, anticancer (Itoigawa et al., 2000; Laronze et al., 2005), antibacterial and antifungal activities (Thevissen et al., 2009).

Many elegant methods for the synthesis of ellipticine and related carbazole alkaloids have been reported (Ergün et al., 1998; Knölker et al., 2002; Liu et al., 2007). In our laboratory, the quest to discover new potential bioactive compounds possessing a carbazole core has attracted all our attention and recently, we have synthesized and characterized a series of carbazole derivatives (Caruso et al., 2007; Sopková-de Oliveira Santos et al., 2008). In this paper, we present the results of structural investigation of a new intermediate (Scheme 1): 6-bromo-9-tert-butoxycarbonyl-1,4-dimethyl-9H- carbazole (Fig. 1) which constitutes a very interesting, cheap and reactive intermediate for the preparation of new analogs of the anticancer agent 9-methoxyellipticine (Le Pecq et al., 1974).

The carbazole ring system (C1—C9A/N9) is nearly planar and the maximum deviation from the least-squares planes does not exceed 0.0662 (14) Å. The pyrrole ring is oriented with respect to the adjacent benzene rings at dihedral angles of 1.27 (7) and 4.86 (7)°.

The N—C bond lengths, namely N9—C8A and N9—C9A [1.408 (2)Å and 1.417 (2) Å] deviate slightly from the normal mean value reported in the literature (Allen et al., 1987). This indicates that the presence of protecting group at atom N9, probably through its electron-withdrawing character, causes the lengthening of N—C bond lengths which has been already observed with similar compounds (Back et al., 2001; Terpin et al., 1998; Chakkaravarthi et al., 2009). Methyl substituent C9 is coplanar with the aromatic rings, methyl substituent C10 closed to N-protecting group displays slight deviation from the carbazole plane with torsion angle values C4A—C9A—C1—C10 of -172.72 (15). This is probably due to minimize the steric hinderance induced by the carbamate group. No particular increase in the widening angle, namely C9A—C1—C10, has been observed compared to non substituted nitrogen atom analogs (Viossat et al., 1988). Weak intramolecular C—H···O interaction is present in the molecule. In fact, atom C8 acts, throught H8, as hydrogen-bond donor to O2, distance between H8 and O2 being 2.33 Å (Table 1). Thus, in order to optimize previous H-bond and minimize steric hinderance of N-protecting group, carbamate is forced to adopt a particular conformation, specially a very twisted torsion angle which have been also seen with N-sulfonyl carbazole derivatives displaying intramolecular H-bonds (Chakkaravarthi et al., 2008). Thus, the torsion angle C1—C9A—N9—C11 is as high as 30.8 (2)°.

In the crystal packing, π–π interactions may be effective in the stabilization of the structure. Stacking interactions occur between aromatic rings leading to columns along a axis. The arrangement of carbazole ring systems within column is parallel but non equally spaced and molecules rotate of 180° alternatively. More precisely, π–π contacts are present with Cg2···Cg3 distance = 3.755 (2)Å [symmetry code: 1 - x,-y, 1 - z] and 3.811 (2)Å [symmetry code:-x,-y, 1 - z]. Cg1···Cg1 distance is 3.927 (2)Å [symmetry code: 1 - x,-y, 1 - z] and 4.199 (2)Å [symmetry code:-x,-y, 1 - z] with a center-to-edge arrangement (Table 2). Cg1, Cg2 and Cg3 are the centroids of N9—C9A—C4A—C5A—C8A, C5A—C5—C6—C7—C8—C8A and C9A—C1—C2—C3—C4—C4A rings, respectively. The carbazole systems are inclined at an angle of about 13.4° to [100] plan.

In conclusion, the crystal structure of an interesting carbazole intermediate has been elucidated. A strong displacement of the N-protecting group out of the plane has been observed. Nevertheless, presence of the tert-Butyloxycarbonyl group does not prevent parallel arrangement of carbazole systems by π stacking. Thus, flat similar compounds could be used as anticancer agents through their intercalation effect like ellipticine.

Experimental

6-Bromo-9-tert-butoxycarbonyl-1,4-dimethyl-9H-carbazole was prepared by reaction of 6-bromo-1,4-dimethyl-9H-carbazole (5.0 g, 18.2 mmol) with di-tert-butyl dicarbonate (8.0 g, 36.5 mmol) in the presence of DMAP (4.46 g, 36.5 mmol) and triethylamine (5.1 ml, 36.5 mmol) in acetonitrile (70 ml). The mixture was stirred for 1 h at 0°C, then left at room temperature for 3 h. The residue obtained after removal of the solvent was diluted with EtOAc (100 ml) and shaken with water (2 x 100 ml). The residue obtained after an usual work-up was purified by silica gel column chromatography using cyclohexane/ether (7:3) as eluent to give the compound as a yellow solid (63% yield). Transparent crystals suitable for X-ray analysis were grown from an acetonitrile solution at room temperature.

Refinement

All non-hydrogen atoms were refined anisotropically. The H atoms were refined with fixed geometry, riding on their carrier atoms with Uiso(H) values set at 1.2 (1.5 for methyl H atoms) times Ueq of the parent atom (C—H = 0.93–0.96 Å) for (I).

Figures

Fig. 1.

Fig. 1.

the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability levels; For the sake of clarity H atoms have been omitted.

Fig. 2.

Fig. 2.

Part of the crystal packing showing the way in which a column along a axis is formed through π–π interactions. For the sake of clarity H atoms have been omitted. [Symmetry codes: (*)-x,-y, 1 - z; (#) 1 - x,-y, 1 - z.]

Crystal data

C19H20BrNO2 Z = 2
Mr = 374.27 F(000) = 384
Triclinic, P1 Dx = 1.435 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.521 (4) Å Cell parameters from 9940 reflections
b = 9.715 (5) Å θ = 5.4–57.6°
c = 11.930 (6) Å µ = 2.38 mm1
α = 91.10 (4)° T = 291 K
β = 96.40 (4)° Block, colorless
γ = 90.96 (4)° 0.46 × 0.37 × 0.34 mm
V = 865.9 (8) Å3

Data collection

Bruker–Nonius APEXII Kappa CCD diffractometer 5718 independent reflections
Radiation source: fine-focus sealed tube 4268 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 31.5°, θmin = 2.1°
Absorption correction: numerical (SAINT; Bruker, 2007) h = −11→11
Tmin = 0.378, Tmax = 0.429 k = −14→14
37091 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.2555P] where P = (Fo2 + 2Fc2)/3
5718 reflections (Δ/σ)max = 0.001
213 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3387 (2) −0.20146 (16) 0.34933 (15) 0.0458 (3)
C2 0.3632 (2) −0.30773 (17) 0.42578 (17) 0.0542 (4)
H2 0.3978 −0.3929 0.3996 0.065*
C3 0.3389 (2) −0.29340 (17) 0.53845 (17) 0.0543 (4)
H3 0.3563 −0.3690 0.5847 0.065*
C4 0.2894 (2) −0.16985 (16) 0.58456 (14) 0.0444 (3)
C4A 0.26189 (18) −0.06062 (15) 0.51011 (13) 0.0376 (3)
C5 0.1845 (2) 0.15877 (16) 0.62353 (12) 0.0411 (3)
H5 0.1796 0.1170 0.6927 0.049*
C5A 0.22209 (18) 0.08324 (14) 0.52870 (12) 0.0360 (3)
C6 0.1549 (2) 0.29736 (16) 0.61113 (13) 0.0437 (3)
C7 0.1590 (2) 0.36264 (16) 0.50904 (14) 0.0466 (3)
H7 0.1388 0.4567 0.5046 0.056*
C8 0.1928 (2) 0.28895 (16) 0.41425 (14) 0.0455 (3)
H8 0.1944 0.3315 0.3452 0.055*
C8A 0.22440 (19) 0.14932 (15) 0.42488 (12) 0.0377 (3)
C9 0.2702 (3) −0.1553 (2) 0.70822 (16) 0.0585 (4)
H9A 0.3533 −0.0863 0.7419 0.088*
H9B 0.2945 −0.2417 0.7440 0.088*
H9C 0.1504 −0.1286 0.7178 0.088*
C9A 0.28247 (18) −0.07791 (15) 0.39496 (13) 0.0383 (3)
C10 0.3831 (3) −0.2220 (2) 0.23079 (17) 0.0601 (4)
H10A 0.4583 −0.3004 0.2270 0.090*
H10B 0.4447 −0.1415 0.2083 0.090*
H10C 0.2747 −0.2370 0.1812 0.090*
C11 0.2066 (2) 0.06842 (17) 0.22633 (13) 0.0455 (3)
C12 0.2220 (3) 0.2419 (2) 0.08037 (15) 0.0595 (4)
C13 0.3005 (4) 0.1472 (3) −0.00242 (19) 0.0880 (8)
H13A 0.2410 0.0588 −0.0042 0.132*
H13B 0.4259 0.1367 0.0206 0.132*
H13C 0.2845 0.1858 −0.0762 0.132*
C14 0.0229 (3) 0.2543 (3) 0.05422 (19) 0.0749 (6)
H14A −0.0326 0.1646 0.0537 0.112*
H14B −0.0037 0.2946 −0.0184 0.112*
H14C −0.0221 0.3116 0.1107 0.112*
C15 0.3132 (5) 0.3824 (3) 0.0885 (2) 0.0956 (9)
H15A 0.2879 0.4284 0.0181 0.143*
H15B 0.4401 0.3719 0.1047 0.143*
H15C 0.2695 0.4360 0.1477 0.143*
Br1 0.10889 (3) 0.40593 (2) 0.738576 (16) 0.06549 (9)
O1 0.12304 (19) −0.01560 (14) 0.16710 (11) 0.0611 (3)
O2 0.26615 (18) 0.19081 (13) 0.19661 (10) 0.0537 (3)
N9 0.25825 (17) 0.05083 (13) 0.34212 (10) 0.0408 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0374 (7) 0.0426 (7) 0.0575 (9) 0.0008 (6) 0.0074 (6) −0.0080 (7)
C2 0.0496 (9) 0.0381 (8) 0.0750 (12) 0.0043 (7) 0.0072 (8) −0.0050 (7)
C3 0.0532 (9) 0.0395 (8) 0.0700 (11) 0.0029 (7) 0.0048 (8) 0.0088 (7)
C4 0.0380 (7) 0.0428 (7) 0.0521 (8) −0.0002 (6) 0.0034 (6) 0.0072 (6)
C4A 0.0305 (6) 0.0376 (7) 0.0448 (7) 0.0003 (5) 0.0040 (5) 0.0011 (5)
C5 0.0416 (7) 0.0454 (8) 0.0365 (7) 0.0035 (6) 0.0048 (6) 0.0014 (6)
C5A 0.0312 (6) 0.0383 (7) 0.0386 (7) 0.0023 (5) 0.0030 (5) 0.0015 (5)
C6 0.0435 (8) 0.0458 (8) 0.0418 (7) 0.0071 (6) 0.0044 (6) −0.0055 (6)
C7 0.0504 (9) 0.0386 (7) 0.0507 (8) 0.0091 (6) 0.0041 (7) −0.0004 (6)
C8 0.0534 (9) 0.0422 (7) 0.0410 (7) 0.0075 (6) 0.0042 (6) 0.0049 (6)
C8A 0.0359 (7) 0.0395 (7) 0.0376 (6) 0.0027 (5) 0.0032 (5) −0.0010 (5)
C9 0.0647 (11) 0.0576 (10) 0.0540 (10) 0.0060 (8) 0.0070 (8) 0.0172 (8)
C9A 0.0324 (6) 0.0377 (7) 0.0446 (7) −0.0002 (5) 0.0044 (5) −0.0006 (5)
C10 0.0612 (11) 0.0584 (10) 0.0620 (11) 0.0077 (8) 0.0145 (8) −0.0156 (8)
C11 0.0471 (8) 0.0499 (8) 0.0400 (7) 0.0040 (7) 0.0068 (6) −0.0013 (6)
C12 0.0760 (12) 0.0653 (11) 0.0388 (8) 0.0052 (9) 0.0114 (8) 0.0088 (7)
C13 0.110 (2) 0.109 (2) 0.0513 (11) 0.0309 (16) 0.0346 (12) 0.0106 (12)
C14 0.0836 (15) 0.0850 (15) 0.0567 (11) 0.0204 (12) 0.0062 (10) 0.0129 (11)
C15 0.129 (2) 0.0829 (17) 0.0745 (16) −0.0223 (16) 0.0062 (15) 0.0314 (13)
Br1 0.08728 (16) 0.05996 (12) 0.05042 (11) 0.01706 (10) 0.01285 (9) −0.01170 (8)
O1 0.0717 (8) 0.0602 (8) 0.0484 (7) −0.0039 (6) −0.0046 (6) −0.0062 (6)
O2 0.0680 (8) 0.0550 (7) 0.0382 (5) −0.0045 (6) 0.0059 (5) 0.0051 (5)
N9 0.0451 (7) 0.0402 (6) 0.0374 (6) 0.0032 (5) 0.0056 (5) −0.0012 (5)

Geometric parameters (Å, °)

C1—C2 1.392 (3) C9—H9C 0.9600
C1—C9A 1.399 (2) C9A—N9 1.417 (2)
C1—C10 1.499 (3) C10—H10A 0.9600
C2—C3 1.381 (3) C10—H10B 0.9600
C2—H2 0.9300 C10—H10C 0.9600
C3—H3 0.9300 C11—O1 1.193 (2)
C4—C3 1.384 (3) C11—O2 1.332 (2)
C4—C4A 1.400 (2) C11—N9 1.407 (2)
C4—C9 1.502 (3) C12—O2 1.486 (2)
C4A—C9A 1.407 (2) C12—C13 1.511 (3)
C5—C5A 1.394 (2) C12—C15 1.514 (3)
C5—H5 0.9300 C13—H13A 0.9600
C5A—C8A 1.408 (2) C13—H13B 0.9600
C5A—C4A 1.452 (2) C13—H13C 0.9600
C6—C5 1.376 (2) C14—C12 1.502 (3)
C6—C7 1.387 (2) C14—H14A 0.9600
C7—C8 1.377 (2) C14—H14B 0.9600
C7—H7 0.9300 C14—H14C 0.9600
C8—C8A 1.387 (2) C15—H15A 0.9600
C8—H8 0.9300 C15—H15B 0.9600
C8A—N9 1.408 (2) C15—H15C 0.9600
C9—H9A 0.9600 Br1—C6 1.9004 (18)
C9—H9B 0.9600
C1—C2—H2 118.3 C8A—N9—C9A 108.07 (12)
C1—C9A—C4A 122.57 (15) C9A—C1—C10 125.22 (16)
C1—C9A—N9 128.35 (14) C9A—C4A—C5A 107.15 (13)
C1—C10—H10A 109.5 H9A—C9—H9B 109.5
C1—C10—H10B 109.5 H9A—C9—H9C 109.5
C1—C10—H10C 109.5 H9B—C9—H9C 109.5
C2—C1—C9A 114.58 (16) H10A—C10—H10B 109.5
C2—C1—C10 120.08 (16) H10A—C10—H10C 109.5
C2—C3—C4 122.00 (17) H10B—C10—H10C 109.5
C2—C3—H3 119.0 C11—O2—C12 121.26 (14)
C3—C2—C1 123.47 (16) C11—N9—C8A 122.65 (13)
C3—C2—H2 118.3 C11—N9—C9A 125.02 (13)
C3—C4—C4A 116.27 (16) C12—C13—H13A 109.5
C3—C4—C9 121.07 (16) C12—C13—H13B 109.5
C4—C3—H3 119.0 C12—C13—H13C 109.5
C4—C4A—C9A 121.03 (14) C12—C14—H14A 109.5
C4—C4A—C5A 131.72 (15) C12—C14—H14B 109.5
C4—C9—H9A 109.5 C12—C14—H14C 109.5
C4—C9—H9B 109.5 C12—C15—H15A 109.5
C4—C9—H9C 109.5 C12—C15—H15B 109.5
C4A—C4—C9 122.65 (16) C12—C15—H15C 109.5
C4A—C9A—N9 108.67 (13) C13—C12—C15 111.9 (2)
C5—C5A—C8A 119.61 (14) H13A—C13—H13C 109.5
C5—C5A—C4A 133.06 (14) H13B—C13—H13C 109.5
C5—C6—C7 122.74 (14) H13A—C13—H13B 109.5
C5—C6—Br1 119.29 (12) C14—C12—C13 112.2 (2)
C5A—C5—H5 121.2 C14—C12—C15 110.9 (2)
C5A—C8A—N9 108.75 (13) H14A—C14—H14B 109.5
C6—C5—C5A 117.59 (14) H14A—C14—H14C 109.5
C6—C5—H5 121.2 H14B—C14—H14C 109.5
C6—C7—H7 119.8 H15A—C15—H15C 109.5
C7—C6—Br1 117.97 (12) H15A—C15—H15B 109.5
C7—C8—C8A 117.97 (15) H15B—C15—H15C 109.5
C7—C8—H8 121.0 O1—C11—O2 127.27 (16)
C8—C7—C6 120.33 (15) O1—C11—N9 123.67 (16)
C8—C7—H7 119.8 O2—C11—N9 109.06 (14)
C8—C8A—C5A 121.75 (14) O2—C12—C14 110.07 (16)
C8—C8A—N9 129.48 (14) O2—C12—C13 109.40 (17)
C8A—C5A—C4A 107.33 (13) O2—C12—C15 101.86 (17)
C8A—C8—H8 121.0
C1—C9A—N9—C11 30.8 (2) C8A—N9—C11—O1 −128.47 (18)
C8—C8A—N9—C11 −22.4 (2) C9A—C4A—C4—C9 179.52 (15)
C9A—N9—C11—O2 −154.38 (14) C2—C3—C4—C9 −177.79 (17)
C9A—N9—C11—O1 25.5 (3) C3—C2—C1—C10 174.71 (17)
C8A—N9—C11—O2 51.6 (2) C4A—C9A—C1—C10 −172.72 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O2 0.93 2.33 2.863 (3) 116

Table 2 π–π interactions (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the N9–C9A–C4A–C5A–C8A, C9A–C1–C2–C3–C4–C4A and C5A–C5–C6–C7–C8–C8A rings, respectively, ccd is the distance between ring centroids, sa is the mean slippage angle (angle subtended by the intercentroid vector to the plane normal) and ipd is the mean interplanar distance (distance from one plane to the neighbouring centroid). For details, see Janiak (2000).

Group 1/group 2 ccd sa ipd
Cg2/Cg3i 3.755 (2) 24 3.532 (1)
Cg3/Cg2i 3.755 (2) 20 3.433 (1)
Cg1/Cg1i 3.927 (2) 22 3.638 (1)
Cg2/Cg3ii 3.811 (2) 18 3.654 (1)
Cg3/Cg2ii 3.811 (2) 16 3.626 (1)
Cg1/Cg1ii 4.199 (2) 32 3.578 (1)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2338).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Back, T., Bethell, R., Parvez, M. & Taylor, J. (2001). J. Org. Chem.66, 8599–8605. [DOI] [PubMed]
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Caruso, A., Voisin-Chiret, A. S., Lancelot, J. C., Sinicropi, M. S., Garofalo, A. & Rault, S. (2007). Heterocycles, 71, 2203–2210.
  5. Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1712–o1713. [DOI] [PMC free article] [PubMed]
  6. Chakkaravarthi, G., Marx, A., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2009). Acta Cryst. E65, o464–o465. [DOI] [PMC free article] [PubMed]
  7. Ergün, Y., Patir, S. & Okay, G. (1998). J. Heterocycl. Chem.35, 1445–1447.
  8. Grazulevicius, J. V., Strohriegl, P., Pielichowski, J. & Pielichowski, K. (2003). Prog. Polym. Sci.28, 1297–1353.
  9. Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod.63, 893–897. [DOI] [PubMed]
  10. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3898.
  11. Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev.102, 4303–4427. [DOI] [PubMed]
  12. Laronze, M., Boisbrun, M., Léonce, S., Pfeiffer, B., Renard, P. Lozach, O. Meijer, L., Lansiaux, A., Bailly, C., Sapi, J. & Laronze, J.-Y. (2005). Bioorg. Med. Chem.13, 2263–2283. [DOI] [PubMed]
  13. Le Pecq, J. B., Xuong, N. D., Gosse, C. & Paoletti, C. P. (1974). Natl Acad. Sci. USA, 71, 5078–5082. [DOI] [PMC free article] [PubMed]
  14. Liu, Z. & Larock, R. C. (2007). Tetrahedron, 63, 347–355. [DOI] [PMC free article] [PubMed]
  15. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sopková-de Oliveira Santos, J., Caruso, A., Lohier, J.-F., Lancelot, J.-C. & Rault, S. (2008). Acta Cryst. C64, o453–o455. [DOI] [PubMed]
  18. Terpin, A., Winklhofer, C., Schumann, S. & Steglich, W. (1998). Tetrahedron, 54, 1745–1752.
  19. Thevissen, K., Marchand, A., Chaltin, P., Meert, E. M., Cammue, B. P. A. (2009). Curr. Med. Chem.16, 2205–2211. [DOI] [PubMed]
  20. Viossat, B., Rodier, N., Gansser, C. & Viel, C. (1988). Acta Cryst. C44, 581–583.
  21. Zhang, X., Chen, Z., Yang, C., Li, Z., Zhang, K., Yao, H., Qin, J., Chen, J. & Cao, Y. (2006). Chem. Phys. Lett.422, 386–390.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026528/om2338sup1.cif

e-66-o1971-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026528/om2338Isup2.hkl

e-66-o1971-Isup2.hkl (279.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES