Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 17;66(Pt 8):m952. doi: 10.1107/S1600536810028138

Dichloridobis(N,N,N′,N′-tetra­methyl­thio­urea-κS)mercury(II)

Sidra Nawaz a, Haseeba Sadaf a, Mohammed Fettouhi b, Atif Fazal b, Saeed Ahmad a,*
PMCID: PMC3007291  PMID: 21588182

Abstract

In the title compound, [HgCl2(C5H12N2S)2], the HgII atom is located on a twofold rotation axis and is bonded in a distorted tetra­hedral coordination mode to two chloride ions and to two tetra­methyl­thio­urea (tmtu) mol­ecules through their S atoms. The crystal structure is stabilized by C—H⋯N and C—H⋯S hydrogen bonds.

Related literature

For background to Hg(II) complexes with thio­urea ligands, see: Ahmad et al. (2009); Chieh (1977); Lobana et al. (2008); Popovic et al. (2000, 2002). The structure of the title compound is isotypic with [Cd(tmtu)2Br2] (Nawaz et al., 2010a ) and [Cd(tmtu)2I2] (Nawaz et al., 2010b ).graphic file with name e-66-0m952-scheme1.jpg

Experimental

Crystal data

  • [HgCl2(C5H12N2S)2]

  • M r = 535.94

  • Monoclinic, Inline graphic

  • a = 18.7418 (12) Å

  • b = 9.5920 (6) Å

  • c = 13.5177 (9) Å

  • β = 130.834 (1)°

  • V = 1838.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.88 mm−1

  • T = 293 K

  • 0.29 × 0.24 × 0.11 mm

Data collection

  • Bruker SMART APEX area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.183, T max = 0.442

  • 12167 measured reflections

  • 2281 independent reflections

  • 2103 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.040

  • S = 1.07

  • 2281 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028138/wm2376sup1.cif

e-66-0m952-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028138/wm2376Isup2.hkl

e-66-0m952-Isup2.hkl (112.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Hg1—Cl1 2.5028 (8)
Hg1—S1 2.5329 (7)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N2 0.96 2.52 2.849 (6) 100
C3—H3A⋯S1 0.96 2.68 2.996 (6) 100
C5—H5A⋯S1 0.96 2.62 3.024 (5) 105

Acknowledgments

We gratefully acknowledge King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for providing the X-ray facility.

supplementary crystallographic information

Comment

The coordination chemistry of mercury(II) complexes with thiourea type ligands has been the subject of several recent studies because of the importance of such systems as structural models in biology (Popovic et al., 2000; 2002). Mercury(II) is known form a wide variety of 1:1 and 1:2 complexes of the types LHgX2 (Popovic et al., 2002) and L2HgX2 (Ahmad et al., 2009; Chieh, 1977: Lobana et al., 2008), where X is a halide or pseudohalide, having structural arrangements entirely based on tetrahedral or pseudo-tetrahedral environments. We have recently reported the crystal structure of a Hg(CN)2 complex of N,N'-dibutylthiourea (dbtu) (Ahmad et al., 2009). Herein we report on the crystal structure of a mercury(II) chloride complex of tetramethylthiourea (tmtu), [Hg(C5H12N2S2)2Cl2], (I) .

The crystal structure of (I) consists of discrete molecular species in which the mercury atom is located on a twofold rotation axis (Fig. 1) and is bonded in a distorted tetrahedral coordination mode to two chloride ions and to two tetramethylthiourea (tmtu) molecules. The Hg—S and Hg—Cl bond lengths are 2.5329 (7) and 2.5028 (8) Å, respectively. The bond angles around Hg are in the range expected for a tetrahedral coordination, with the S—Hg—S angle (120.75 (4)°) having the largest deviation from the ideal value. The main cause of this deviation is the steric interaction between the —CH3 groups. The SCN2— moiety of Tmtu is essentially planar with the C—N and C—S bond lengths corresponding to the values intermediate between single and double bonds.

The structure of the title compound is isotypic with [Cd(tmtu)2Br2] (Nawaz et al., 2010a) and [Cd(tmtu)2I2] (Nawaz et al., 2010b).

For a more detailed description of the structure, see: Nawaz et al. (2010a).

Experimental

To 0.27 g (1.0 mmol) mercury(II) chloride in 10 ml methanol was added two equivalents of tetramethylthiourea in 15 ml methanol. A clear solution was obtained that was stirred for 30 minutes. The colorless solution was filtered and the filtrate was kept at room temperature for crystallization. As a result, a white crystalline product was obtained, that was finally washed with methanol and dried.

Refinement

H atoms were placed in calculated positions with a C—H distance of 0.96 Å and Uiso(H) = 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound with atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H-atoms were omitted for clarity.

Crystal data

[HgCl2(C5H12N2S)2] F(000) = 1032
Mr = 535.94 Dx = 1.936 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 12167 reflections
a = 18.7418 (12) Å θ = 2.6–28.3°
b = 9.5920 (6) Å µ = 8.88 mm1
c = 13.5177 (9) Å T = 293 K
β = 130.834 (1)° Colourless, plate
V = 1838.6 (2) Å3 0.29 × 0.24 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEX area detector diffractometer 2281 independent reflections
Radiation source: normal-focus sealed tube 2103 reflections with I > 2σ(I)
graphite Rint = 0.031
ω scans θmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −24→24
Tmin = 0.183, Tmax = 0.442 k = −12→12
12167 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020 H-atom parameters constrained
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0109P)2 + 2.5249P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.002
2281 reflections Δρmax = 0.72 e Å3
92 parameters Δρmin = −0.79 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00244 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 1.0000 0.703186 (17) 0.2500 0.04539 (7)
Cl1 1.14323 (5) 0.55933 (9) 0.34397 (8) 0.0591 (2)
S1 1.02994 (5) 0.83371 (9) 0.43697 (7) 0.04983 (18)
N1 0.91286 (18) 0.7622 (3) 0.4747 (3) 0.0482 (6)
N2 0.84430 (16) 0.8798 (3) 0.2830 (2) 0.0488 (6)
C1 0.92029 (18) 0.8240 (3) 0.3933 (3) 0.0367 (5)
C2 0.8466 (3) 0.8103 (4) 0.4900 (4) 0.0704 (10)
H2A 0.8192 0.8971 0.4446 0.106*
H2B 0.8793 0.8232 0.5812 0.106*
H2C 0.7977 0.7421 0.4542 0.106*
C3 0.9842 (3) 0.6647 (4) 0.5756 (4) 0.0769 (11)
H3A 1.0131 0.6182 0.5468 0.115*
H3B 0.9549 0.5970 0.5914 0.115*
H3C 1.0313 0.7149 0.6548 0.115*
C4 0.7491 (2) 0.8240 (5) 0.2114 (4) 0.0802 (12)
H4A 0.7531 0.7329 0.2441 0.120*
H4B 0.7174 0.8179 0.1200 0.120*
H4C 0.7144 0.8847 0.2231 0.120*
C5 0.8518 (3) 0.9798 (4) 0.2094 (4) 0.0774 (11)
H5A 0.9121 1.0250 0.2669 0.116*
H5B 0.8027 1.0483 0.1711 0.116*
H5C 0.8454 0.9323 0.1414 0.116*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.05014 (10) 0.04849 (10) 0.05259 (11) 0.000 0.04018 (9) 0.000
Cl1 0.0519 (4) 0.0599 (5) 0.0652 (5) 0.0126 (3) 0.0381 (4) 0.0065 (4)
S1 0.0386 (3) 0.0716 (5) 0.0453 (4) −0.0091 (3) 0.0300 (3) −0.0142 (3)
N1 0.0611 (15) 0.0488 (13) 0.0566 (14) 0.0005 (11) 0.0480 (13) 0.0002 (11)
N2 0.0439 (13) 0.0560 (15) 0.0465 (13) 0.0051 (11) 0.0295 (11) 0.0020 (11)
C1 0.0415 (13) 0.0364 (13) 0.0415 (13) −0.0023 (10) 0.0312 (12) −0.0061 (10)
C2 0.085 (2) 0.081 (3) 0.092 (3) −0.011 (2) 0.078 (2) −0.014 (2)
C3 0.098 (3) 0.070 (2) 0.076 (2) 0.015 (2) 0.063 (2) 0.024 (2)
C4 0.0387 (17) 0.116 (3) 0.070 (2) −0.0013 (18) 0.0292 (17) −0.015 (2)
C5 0.088 (3) 0.081 (3) 0.069 (2) 0.027 (2) 0.054 (2) 0.029 (2)

Geometric parameters (Å, °)

Hg1—Cl1i 2.5028 (8) C2—H2B 0.9600
Hg1—Cl1 2.5028 (8) C2—H2C 0.9600
Hg1—S1 2.5329 (7) C3—H3A 0.9600
Hg1—S1i 2.5329 (7) C3—H3B 0.9600
S1—C1 1.730 (3) C3—H3C 0.9600
N1—C1 1.336 (3) C4—H4A 0.9600
N1—C2 1.460 (4) C4—H4B 0.9600
N1—C3 1.461 (4) C4—H4C 0.9600
N2—C1 1.327 (3) C5—H5A 0.9600
N2—C5 1.453 (4) C5—H5B 0.9600
N2—C4 1.466 (4) C5—H5C 0.9600
C2—H2A 0.9600
Cl1i—Hg1—Cl1 113.08 (4) H2A—C2—H2C 109.5
Cl1i—Hg1—S1 104.08 (3) H2B—C2—H2C 109.5
Cl1—Hg1—S1 107.56 (3) N1—C3—H3A 109.5
Cl1i—Hg1—S1i 107.56 (3) N1—C3—H3B 109.5
Cl1—Hg1—S1i 104.08 (3) H3A—C3—H3B 109.5
S1—Hg1—S1i 120.75 (4) N1—C3—H3C 109.5
C1—S1—Hg1 101.20 (9) H3A—C3—H3C 109.5
C1—N1—C2 122.2 (3) H3B—C3—H3C 109.5
C1—N1—C3 121.9 (3) N2—C4—H4A 109.5
C2—N1—C3 114.4 (3) N2—C4—H4B 109.5
C1—N2—C5 121.5 (3) H4A—C4—H4B 109.5
C1—N2—C4 122.9 (3) N2—C4—H4C 109.5
C5—N2—C4 114.2 (3) H4A—C4—H4C 109.5
N2—C1—N1 119.5 (2) H4B—C4—H4C 109.5
N2—C1—S1 121.6 (2) N2—C5—H5A 109.5
N1—C1—S1 118.9 (2) N2—C5—H5B 109.5
N1—C2—H2A 109.5 H5A—C5—H5B 109.5
N1—C2—H2B 109.5 N2—C5—H5C 109.5
H2A—C2—H2B 109.5 H5A—C5—H5C 109.5
N1—C2—H2C 109.5 H5B—C5—H5C 109.5

Symmetry codes: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···N2 0.96 2.52 2.849 (6) 100
C3—H3A···S1 0.96 2.68 2.996 (6) 100
C5—H5A···S1 0.96 2.62 3.024 (5) 105

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2376).

References

  1. Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191–m1192. [DOI] [PMC free article] [PubMed]
  2. Bruker (2008). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chieh, C. (1977). Can. J. Chem.55, 1583-1587.
  4. Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem.634, 718–723.
  5. Nawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. & Ahmad, S. (2010a). Acta Cryst. E66, m950. [DOI] [PMC free article] [PubMed]
  6. Nawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. & Ahmad, S. (2010b). Acta Cryst. E66, m951. [DOI] [PMC free article] [PubMed]
  7. Popovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., Rajic, M., Vikic-Topic, D. & Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142–152.
  8. Popovic, Z., Soldin, Z. G., Pavlovic, G., Matkovic-Calogovic, D., Mrvos-Sermek, D. & Rajic, M. (2002). Struct. Chem.13, 425–436.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028138/wm2376sup1.cif

e-66-0m952-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028138/wm2376Isup2.hkl

e-66-0m952-Isup2.hkl (112.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES