Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 14;66(Pt 8):o2027. doi: 10.1107/S1600536810026838

3-Hy­droxy­methyl-1-(4-meth­oxy­phen­yl)imidazolidine-2,4-dione

Xian-Chao Cheng a, Jing-Jing Hou a, Run-Ling Wang a,*, Wei-Li Dong a
PMCID: PMC3007295  PMID: 21588337

Abstract

In the title mol­ecule, C11H12N2O4, the dihedral angle between the benzene ring and imidazolidine ring is 7.1 (5)°. In the crystal structure, the hy­droxy groups are involved in the formation of inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules related by translation into C(2) chains along the b axis.

Related literature

For related structures, see: Gerdil (1960); Sun et al. (2010). For details of the synthesis, see Niwata et al. (1997).graphic file with name e-66-o2027-scheme1.jpg

Experimental

Crystal data

  • C11H12N2O4

  • M r = 236.23

  • Monoclinic, Inline graphic

  • a = 21.280 (4) Å

  • b = 6.3309 (13) Å

  • c = 7.8813 (16) Å

  • β = 100.52 (3)°

  • V = 1043.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.977, T max = 0.986

  • 7503 measured reflections

  • 1841 independent reflections

  • 1540 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.112

  • S = 1.09

  • 1841 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026838/cv2742sup1.cif

e-66-o2027-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026838/cv2742Isup2.hkl

e-66-o2027-Isup2.hkl (90.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.82 1.92 2.7346 (17) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (grant No. 20972112), the Key Program of Tianjin Natural Science Foundation (grant No. 09JCZDJC21600), the Specialized Research Fund for the Doctoral Program of Higher Education of China (grant No. 20091202110010) and the Tianjin Medical University Science Foundation (grant No. 2009ky16).

supplementary crystallographic information

Comment

During the research of novel antidiabetic agents, we found that imidazolidine-2,4-dione derivatives had potent antidiabetic activities. The crystal structure of the title compound was determined to investigate the relationship between structure and antidiabetic activity.

In the title compound, all bond lengths and angles are normal and in a good agreement with those reported previously (Gerdil, 1960; Sun et al., 2010). The dihedral angle between the benzene ring (C2—C7) and imidazolidine ring (C9—C10/N1/N2) is 7.1 (5)°. In the crystal structure, the hydroxy groups are involved in formaton of intermolecular O—H···O hydrogen bonds (Table 1), which link the molecules related by translation along axis b into linear chains.

Experimental

A mixture of 1-(4-methoxyphenyl)imidazolidine-2,4-dione (0.27 g, 1.32 mmol), 37% formaldehyde (2.1 ml, 27.9 mmol), and methanol (8 ml) was stirred at 70 ° C for 2 h. After the reaction, water (8 ml) was added and the precipitate was filtered and washed with water to give 3-(hydroxymethyl)-1-(4-methoxyphenyl)imidazolidine-2,4-dione (0.27 g, 90% yield) (Niwata et al., 1997). Crystals suitable for X-ray diffraction were obtained through slow evaporation of a solution of the pure title compound in dichloromethane/methanol (1/1 by volume).

Refinement

All H atoms were found on difference maps, with C—H = 0.95–0.99 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms and 1.5Ueq(C,O) for the methyl and hydroxy H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound, with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C11H12N2O4 F(000) = 496
Mr = 236.23 Dx = 1.503 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2988 reflections
a = 21.280 (4) Å θ = 2.0–27.9°
b = 6.3309 (13) Å µ = 0.12 mm1
c = 7.8813 (16) Å T = 113 K
β = 100.52 (3)° Platelet, colorless
V = 1043.9 (4) Å3 0.20 × 0.18 × 0.12 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer 1841 independent reflections
Radiation source: rotating anode 1540 reflections with I > 2σ(I)
confocal Rint = 0.042
Detector resolution: 7.31 pixels mm-1 θmax = 25.0°, θmin = 2.0°
ω and φ scans h = −25→23
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −7→7
Tmin = 0.977, Tmax = 0.986 l = −7→9
7503 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.0281P] where P = (Fo2 + 2Fc2)/3
1841 reflections (Δ/σ)max < 0.001
156 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.06206 (5) 0.43299 (18) 0.14946 (13) 0.0262 (3)
O2 0.31479 (5) 0.92240 (17) 0.56402 (13) 0.0239 (3)
O3 0.41891 (6) 0.98695 (18) 0.93286 (14) 0.0310 (3)
H3 0.4247 1.1116 0.9119 0.046*
O4 0.43355 (5) 0.41010 (18) 0.88227 (13) 0.0263 (3)
N1 0.29378 (6) 0.5666 (2) 0.60155 (15) 0.0189 (3)
N2 0.38408 (6) 0.7058 (2) 0.74760 (15) 0.0198 (3)
C1 0.02888 (8) 0.2377 (3) 0.1525 (2) 0.0333 (4)
H1A 0.0536 0.1259 0.1151 0.050*
H1B −0.0118 0.2463 0.0767 0.050*
H1C 0.0225 0.2095 0.2679 0.050*
C2 0.11895 (7) 0.4547 (3) 0.26381 (19) 0.0207 (4)
C3 0.14827 (7) 0.6511 (3) 0.26585 (19) 0.0229 (4)
H3A 0.1292 0.7568 0.1921 0.027*
C4 0.20547 (7) 0.6918 (3) 0.37598 (19) 0.0216 (4)
H4 0.2243 0.8244 0.3768 0.026*
C5 0.23490 (7) 0.5332 (3) 0.48603 (18) 0.0188 (4)
C6 0.20577 (7) 0.3369 (3) 0.48223 (18) 0.0208 (4)
H6 0.2252 0.2302 0.5544 0.025*
C7 0.14802 (7) 0.2966 (3) 0.3726 (2) 0.0234 (4)
H7 0.1290 0.1644 0.3722 0.028*
C8 0.32780 (7) 0.7496 (2) 0.62781 (19) 0.0188 (4)
C9 0.38857 (7) 0.4969 (3) 0.78904 (18) 0.0208 (4)
C10 0.32821 (7) 0.3927 (3) 0.69862 (18) 0.0208 (4)
H10A 0.3374 0.2813 0.6222 0.025*
H10B 0.3041 0.3342 0.7807 0.025*
C11 0.43450 (7) 0.8604 (3) 0.79990 (19) 0.0237 (4)
H11A 0.4748 0.7887 0.8400 0.028*
H11B 0.4392 0.9482 0.7021 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0191 (6) 0.0278 (7) 0.0292 (6) −0.0026 (5) −0.0022 (5) −0.0004 (5)
O2 0.0255 (6) 0.0176 (6) 0.0282 (6) −0.0021 (5) 0.0038 (5) 0.0026 (5)
O3 0.0468 (8) 0.0223 (7) 0.0258 (6) −0.0109 (6) 0.0117 (5) −0.0066 (5)
O4 0.0242 (6) 0.0259 (7) 0.0264 (6) 0.0028 (5) −0.0021 (5) −0.0016 (5)
N1 0.0182 (7) 0.0165 (7) 0.0207 (7) −0.0004 (5) 0.0000 (5) 0.0008 (5)
N2 0.0198 (7) 0.0196 (7) 0.0196 (7) −0.0036 (5) 0.0026 (5) −0.0025 (5)
C1 0.0251 (9) 0.0371 (11) 0.0347 (9) −0.0111 (8) −0.0024 (7) 0.0010 (8)
C2 0.0170 (8) 0.0262 (9) 0.0189 (8) 0.0003 (6) 0.0029 (6) −0.0035 (7)
C3 0.0215 (8) 0.0233 (9) 0.0234 (8) 0.0019 (7) 0.0028 (6) 0.0033 (7)
C4 0.0213 (8) 0.0189 (8) 0.0247 (8) −0.0008 (6) 0.0046 (6) 0.0014 (7)
C5 0.0180 (8) 0.0214 (8) 0.0175 (8) −0.0004 (6) 0.0048 (6) −0.0021 (6)
C6 0.0207 (8) 0.0195 (9) 0.0216 (8) 0.0005 (6) 0.0024 (6) 0.0019 (6)
C7 0.0231 (8) 0.0208 (9) 0.0262 (8) −0.0049 (7) 0.0040 (6) −0.0017 (7)
C8 0.0188 (8) 0.0205 (8) 0.0182 (8) −0.0021 (6) 0.0063 (6) −0.0023 (6)
C9 0.0224 (8) 0.0222 (9) 0.0182 (8) 0.0012 (7) 0.0049 (6) −0.0027 (6)
C10 0.0222 (8) 0.0181 (8) 0.0211 (8) 0.0004 (6) 0.0017 (6) −0.0001 (6)
C11 0.0206 (8) 0.0267 (9) 0.0235 (8) −0.0069 (7) 0.0032 (6) −0.0034 (7)

Geometric parameters (Å, °)

O1—C2 1.3778 (18) C2—C7 1.388 (2)
O1—C1 1.426 (2) C2—C3 1.390 (2)
O2—C8 1.2147 (19) C3—C4 1.384 (2)
O3—C11 1.406 (2) C3—H3A 0.9300
O3—H3 0.8200 C4—C5 1.398 (2)
O4—C9 1.2252 (19) C4—H4 0.9300
N1—C8 1.3614 (19) C5—C6 1.387 (2)
N1—C5 1.4238 (19) C6—C7 1.391 (2)
N1—C10 1.460 (2) C6—H6 0.9300
N2—C9 1.361 (2) C7—H7 0.9300
N2—C8 1.411 (2) C9—C10 1.503 (2)
N2—C11 1.4556 (19) C10—H10A 0.9700
C1—H1A 0.9600 C10—H10B 0.9700
C1—H1B 0.9600 C11—H11A 0.9700
C1—H1C 0.9600 C11—H11B 0.9700
C2—O1—C1 117.01 (13) C4—C5—N1 122.16 (14)
C11—O3—H3 109.5 C5—C6—C7 121.23 (15)
C8—N1—C5 127.24 (13) C5—C6—H6 119.4
C8—N1—C10 111.11 (12) C7—C6—H6 119.4
C5—N1—C10 121.46 (13) C2—C7—C6 119.68 (15)
C9—N2—C8 111.44 (12) C2—C7—H7 120.2
C9—N2—C11 124.73 (13) C6—C7—H7 120.2
C8—N2—C11 123.31 (13) O2—C8—N1 128.95 (14)
O1—C1—H1A 109.5 O2—C8—N2 123.76 (14)
O1—C1—H1B 109.5 N1—C8—N2 107.30 (13)
H1A—C1—H1B 109.5 O4—C9—N2 126.35 (15)
O1—C1—H1C 109.5 O4—C9—C10 126.42 (16)
H1A—C1—H1C 109.5 N2—C9—C10 107.23 (12)
H1B—C1—H1C 109.5 N1—C10—C9 102.77 (13)
O1—C2—C7 124.84 (15) N1—C10—H10A 111.2
O1—C2—C3 115.85 (14) C9—C10—H10A 111.2
C7—C2—C3 119.31 (15) N1—C10—H10B 111.2
C4—C3—C2 121.01 (15) C9—C10—H10B 111.2
C4—C3—H3A 119.5 H10A—C10—H10B 109.1
C2—C3—H3A 119.5 O3—C11—N2 109.40 (12)
C3—C4—C5 119.91 (15) O3—C11—H11A 109.8
C3—C4—H4 120.0 N2—C11—H11A 109.8
C5—C4—H4 120.0 O3—C11—H11B 109.8
C6—C5—C4 118.84 (14) N2—C11—H11B 109.8
C6—C5—N1 119.00 (14) H11A—C11—H11B 108.2
C1—O1—C2—C7 4.5 (2) C10—N1—C8—O2 177.46 (15)
C1—O1—C2—C3 −176.06 (14) C5—N1—C8—N2 −177.40 (13)
O1—C2—C3—C4 179.71 (13) C10—N1—C8—N2 −2.44 (17)
C7—C2—C3—C4 −0.8 (2) C9—N2—C8—O2 −175.85 (14)
C2—C3—C4—C5 0.7 (2) C11—N2—C8—O2 −3.8 (2)
C3—C4—C5—C6 0.0 (2) C9—N2—C8—N1 4.06 (17)
C3—C4—C5—N1 179.89 (14) C11—N2—C8—N1 176.11 (12)
C8—N1—C5—C6 −177.26 (14) C8—N2—C9—O4 175.87 (14)
C10—N1—C5—C6 8.2 (2) C11—N2—C9—O4 4.0 (2)
C8—N1—C5—C4 2.8 (2) C8—N2—C9—C10 −3.93 (17)
C10—N1—C5—C4 −171.66 (14) C11—N2—C9—C10 −175.84 (12)
C4—C5—C6—C7 −0.5 (2) C8—N1—C10—C9 0.15 (15)
N1—C5—C6—C7 179.56 (14) C5—N1—C10—C9 175.45 (13)
O1—C2—C7—C6 179.69 (13) O4—C9—C10—N1 −177.52 (15)
C3—C2—C7—C6 0.2 (2) N2—C9—C10—N1 2.27 (15)
C5—C6—C7—C2 0.4 (2) C9—N2—C11—O3 −105.04 (16)
C5—N1—C8—O2 2.5 (3) C8—N2—C11—O3 83.98 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O4i 0.82 1.92 2.7346 (17) 174

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2742).

References

  1. Gerdil, R. (1960). Acta Cryst.13, 165–166.
  2. Niwata, S., Fukami, H., Sumida, M., Ito, A., Kakutani, S., Saitoh, M., Suzuki, K., Imoto, M., Shibata, H., Imajo, S., Kiso, Y., Tanaka, T., Nakazato, H., Ishihara, T., Takai, S., Yamamoto, D., Shiota, N., Miyazaki, M., Okunishi, H., Kinoshita, A., Urata, H. & Arakawa, K. (1997). J. Med. Chem.40, 2156–2163. [DOI] [PubMed]
  3. Rigaku. (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sun, S.-X., Zhang, H., Cheng, X.-C., Wang, R.-L. & Dong, W.-L. (2010). Acta Cryst. E66, o1308. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026838/cv2742sup1.cif

e-66-o2027-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026838/cv2742Isup2.hkl

e-66-o2027-Isup2.hkl (90.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES