Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 24;66(Pt 8):o2101–o2102. doi: 10.1107/S1600536810028783

Monoclinic form I of clopidogrel hydrogen sulfate from powder diffraction data

Vladimir V Chernyshev a,*, Sergey V Pirogov b, Irina N Shishkina a, Yurii A Velikodny a
PMCID: PMC3007342  PMID: 21588394

Abstract

The asymmetric unit of the title compound, C16H17ClNO2S+·HSO4 , (I) [systematic name: (+)-(S)-5-[(2-chloro­phen­yl)(meth­oxy­carbon­yl)meth­yl]-4,5,6,7-tetra­hydro­thieno[3,2-c]pyridin-5-ium hydrogen sulfate], contains two independent cations of clopidogrel and two independent hydrogensulfate anions. The two independent cations are of similar conformation; however, this differs from that observed in ortho­rhom­bic form (II) [Bousquet et al. (2003). US Patent No. 6 504 030]. The H—N—Cchiral—H fragment shows a trans conformation in both independent cations in (I) and a gauche conformation in (II). In (I), classical inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link two independent cations and two independent anions into an isolated cluster, in which two cations inter­act with one anion only via N—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯O hydrogen bonds further consolidate the crystal packing.

Related literature

For the characterization of six polymorphic forms of Clopidogrel hydrogensulfate, see: Badorc & Frehel (1989) (form I); Bousquet et al. (2003) (ortho­rhom­bic form II); Lifshitz-Liron et al. (2006) (forms III-VI). For recent studies of forms I and II, see: Raijada et al. (2010); Zupancic et al. (2010); Srivastava et al. (2010); Song et al. (2010). For details of the indexing algorithm, see: Werner et al. (1985). The methodology of the refinement (including applied restraints and constraints) was described in detail by Chernyshev et al. (2009).graphic file with name e-66-o2101-scheme1.jpg

Experimental

Crystal data

  • C16H17ClNO2S+·HSO4

  • M r = 419.89

  • Monoclinic, Inline graphic

  • a = 10.4315 (12) Å

  • b = 15.3345 (18) Å

  • c = 12.6320 (16) Å

  • β = 113.28 (2)°

  • V = 1856.1 (5) Å3

  • Z = 4

  • Cu Kα1 radiation, λ = 1.54059 Å

  • μ = 4.23 mm−1

  • T = 295 K

  • Flat sheet, 15 × 1 mm

Data collection

  • Guinier camera G670 diffractometer

  • Specimen mounting: thin layer in the specimen holder of the camera

  • Data collection mode: transmission

  • Scan method: continuous

  • min = 4.00°, 2θmax = 90.00°, 2θstep = 0.01°

Refinement

  • R p = 0.019

  • R wp = 0.025

  • R exp = 0.015

  • R Bragg = 0.049

  • χ2 = 2.982

  • 8601 data points

  • 205 parameters

  • 155 restraints

  • H-atom parameters not refined

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software; method used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA and SHELXL97 (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028783/lh5082sup1.cif

e-66-o2101-sup1.cif (22.8KB, cif)

Rietveld powder data: contains datablocks I. DOI: 10.1107/S1600536810028783/lh5082Isup2.rtv

e-66-o2101-Isup2.rtv (286KB, rtv)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5A—H5A⋯O3A 0.91 1.91 2.785 (16) 161
N5B—H5B⋯O6A 0.91 1.94 2.795 (19) 157
O5A—H51⋯O6B 0.82 1.85 2.640 (17) 161
O5B—H52⋯O4A 0.82 1.82 2.567 (17) 152
C4A—H4A1⋯O4Bi 0.97 2.35 3.17 (2) 142
C4A—H4A2⋯O1B 0.97 2.52 3.225 (17) 129
C3B—H3B⋯O4Bii 0.93 2.41 3.28 (2) 154
C6A—H6A2⋯O3Bi 0.97 2.31 3.175 (19) 149
C4B—H4B2⋯O3Biii 0.97 2.23 3.13 (2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Clopidogrel hydrogensulfate is an antiplatelet drug, which acts by selective and irreversible inhibition of ADP-induced platelet aggregation. The drug is available in the market as oral solid dosage form. Six different polymorphs are known for the drug - I (Badorc & Frehel, 1989), II (Bousquet et al., 2003) and III-VI (Lifshitz-Liron et al., 2006). However, only polymorphs I and II are used in pharmaceutical formulations (Bousquet et al., 2003), and, therefore, they are under intensive studies (Raijada et al., 2010; Zupan˘ci˘c et al., 2010; Srivastava et al., 2010; Song et al., 2010). The crystal structure of orthorhombic polymorph II has been reported by Bousquet et al. (2003). Herewith we report the crystal structure of the monoclinic polymorph I.

The asymmetric unit of I (Fig. 1), contains two independent cations of clopidogrel and two independent hydrogensulfate anions. The two independent cations are of similar conformation, which, however, differs from that observed in II. The H–N—Cchiral–H fragment shows a trans conformation in both independent cations in I and a gauche conformation in II.

The hydrogen-bonding motifs in I and II are essentially different too. In I, the classical intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link two independent cations and two independent anions into isolated cluster, where two cations interact with one anion only via N—H···O hydrogen bonds (Fig. 1). Weak intermolecular C—H···O hydrogen bonds (Table 1) consolidate further the crystal packing of I. In II, O—H···O hydrogen bonds link anions into linear chains, while N—H···O hydrogen bond attach one cation to one anion. These differences in crystal packings of Forms I and II may explain why II exhibits a lower solubility (and is more stable) than I.

Experimental

The title compound I was synthesized in accordance with the known procedure (Badorc & Frehel, 1989), and obtained as a white polycrystalline powder. Optical rotation [α]D +53.8° (c<ι> 1.9, CH3OH).

Refinement

During the exposure, the specimen was spun in its plane to improve particle statistics. The monoclinic unit-cell dimensions were determined with the indexing program TREOR (Werner et al., 1985), M20=37, using the first 30 peak positions. The same monoclinic unit-cell dimensions were reported in 2003 by Martin Vickers at http://img.chem.ucl.ac.uk/www/reports/clopi/clopi.htm.

The structure of was solved by simulated annealing procedure (Zhukov et al., 2001) and refined following the methodology described in (Chernyshev et al., 2009). For non-H atoms, ten independent Uiso parameters were refined - six for six independent Cl and S atoms, two common Uiso for two groups of anion' oxygen atoms, and two common Uiso for the rest atoms in independent cations. H atoms were placed in geometrically calculated positions and not refined. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.

Figures

Fig. 1.

Fig. 1.

The content of asymmetric unit of I showing the atomic labeling and 40% probability displacement spheres. Dashed lines denote classical N—H···O and O—H···O hydrogen bonds.

Fig. 2.

Fig. 2.

The Rietveld plot, showing the observed and difference profiles for I. The reflection positions are shown above the difference profile.

Crystal data

C16H17ClNO2S+·HSO4 Dx = 1.503 Mg m3
Mr = 419.89 Melting point: 455(3) K
Monoclinic, P21 Cu Kα1 radiation, λ = 1.54059 Å
a = 10.4315 (12) Å µ = 4.23 mm1
b = 15.3345 (18) Å T = 295 K
c = 12.6320 (16) Å Particle morphology: plate
β = 113.28 (2)° white
V = 1856.1 (5) Å3 flat sheet, 15 × 1 mm
Z = 4 Specimen preparation: Prepared at 295 K and 101 kPa
F(000) = 872

Data collection

Guinier camera G670 diffractometer Data collection mode: transmission
Radiation source: line-focus sealed tube Scan method: continuous
Curved Germanium (111) min = 4.00°, 2θmax = 90.00°, 2θstep = 0.01°
Specimen mounting: thin layer in the specimen holder of the camera

Refinement

Refinement on Inet Profile function: split-type pseudo-Voigt (Toraya, 1986)
Least-squares matrix: full with fixed elements per cycle 205 parameters
Rp = 0.019 155 restraints
Rwp = 0.025 42 constraints
Rexp = 0.015 H-atom parameters not refined
RBragg = 0.049 Weighting scheme based on measured s.u.'s
χ2 = 2.982 (Δ/σ)max = 0.001
8601 data points Background function: Chebyshev polynomial up to the 5th order
Excluded region(s): none Preferred orientation correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1A 0.4095 (4) 0.6092 (3) 1.1269 (4) 0.0731 (15)*
S1A −0.2971 (4) 0.6556 (3) 0.6216 (4) 0.0642 (15)*
O1A 0.2960 (8) 0.9086 (7) 0.9643 (8) 0.065 (3)*
O2A 0.2551 (8) 0.8678 (6) 1.1168 (7) 0.065 (4)*
C2A −0.2033 (15) 0.5796 (11) 0.5834 (13) 0.066 (6)*
H2A −0.2406 0.5448 0.5181 0.079*
C3A −0.0682 (14) 0.5760 (10) 0.6594 (12) 0.065 (6)*
H3A −0.0030 0.5365 0.6547 0.078*
C4A 0.1068 (13) 0.6546 (11) 0.8382 (12) 0.065 (5)*
H4A1 0.1257 0.6125 0.8999 0.078*
H4A2 0.1751 0.6463 0.8048 0.078*
N5A 0.1194 (10) 0.7458 (9) 0.8865 (9) 0.065 (4)*
H5A 0.1212 0.7831 0.8310 0.078*
C6A −0.0077 (15) 0.7685 (9) 0.9103 (12) 0.066 (6)*
H6A1 0.0063 0.8255 0.9464 0.079*
H6A2 −0.0161 0.7266 0.9647 0.079*
C7A −0.1428 (14) 0.7696 (10) 0.8044 (12) 0.065 (6)*
H7A1 −0.2214 0.7728 0.8269 0.078*
H7A2 −0.1455 0.8201 0.7574 0.078*
C8A 0.2536 (14) 0.7586 (10) 0.9906 (12) 0.065 (6)*
H8A 0.2491 0.7262 1.0559 0.078*
C9A 0.3733 (14) 0.7242 (10) 0.9634 (12) 0.065 (6)*
C10A 0.4519 (12) 0.6534 (11) 1.0198 (12) 0.065 (6)*
C11A 0.5690 (13) 0.6242 (10) 1.0020 (12) 0.065 (6)*
H11A 0.6223 0.5766 1.0406 0.078*
C12A 0.5986 (14) 0.6727 (11) 0.9213 (12) 0.065 (6)*
H12A 0.6703 0.6529 0.9013 0.078*
C13A 0.5311 (13) 0.7470 (11) 0.8691 (12) 0.065 (5)*
H13A 0.5617 0.7792 0.8213 0.078*
C14A 0.4160 (14) 0.7729 (9) 0.8893 (12) 0.065 (6)*
H14A 0.3669 0.8226 0.8536 0.078*
C15A 0.2739 (15) 0.8538 (10) 1.0203 (12) 0.065 (5)*
C16A 0.2910 (14) 0.9531 (10) 1.1684 (13) 0.066 (6)*
H16A 0.2731 0.9553 1.2373 0.098*
H16B 0.2357 0.9964 1.1151 0.098*
H16C 0.3881 0.9642 1.1873 0.098*
C17A −0.1513 (14) 0.6881 (10) 0.7374 (12) 0.065 (6)*
C18A −0.0391 (13) 0.6396 (10) 0.7466 (12) 0.065 (6)*
Cl1B 0.4361 (4) 0.7397 (3) 0.3437 (4) 0.0692 (14)*
S1B −0.3489 (4) 0.8614 (3) 0.1741 (4) 0.0670 (16)*
O1B 0.1492 (9) 0.6692 (7) 0.5994 (8) 0.072 (4)*
O2B 0.3318 (9) 0.6156 (6) 0.5793 (8) 0.072 (4)*
C2B −0.2713 (14) 0.9258 (11) 0.1059 (12) 0.072 (6)*
H2B −0.3189 0.9664 0.0493 0.086*
C3B −0.1318 (13) 0.9106 (12) 0.1440 (12) 0.072 (6)*
H3B −0.0732 0.9378 0.1146 0.087*
C4B 0.0592 (15) 0.8170 (11) 0.2903 (13) 0.072 (6)*
H4B1 0.1222 0.8665 0.3124 0.086*
H4B2 0.0822 0.7819 0.2363 0.086*
N5B 0.0783 (11) 0.7634 (8) 0.3955 (10) 0.072 (5)*
H5B 0.0669 0.8006 0.4472 0.086*
C6B −0.0383 (15) 0.6974 (10) 0.3650 (13) 0.072 (6)*
H6B1 −0.0191 0.6578 0.4293 0.086*
H6B2 −0.0411 0.6634 0.2993 0.086*
C7B −0.1796 (14) 0.7400 (12) 0.3363 (12) 0.072 (6)*
H7B1 −0.2535 0.6985 0.2974 0.086*
H7B2 −0.1883 0.7587 0.4065 0.086*
C8B 0.2241 (14) 0.7255 (10) 0.4537 (13) 0.072 (6)*
H8B 0.2438 0.6882 0.3989 0.086*
C9B 0.3321 (15) 0.7989 (10) 0.4937 (13) 0.071 (6)*
C10B 0.4343 (15) 0.8091 (11) 0.4515 (13) 0.072 (6)*
C11B 0.5344 (14) 0.8730 (10) 0.4922 (12) 0.072 (6)*
H11B 0.6013 0.8796 0.4613 0.087*
C12B 0.5345 (15) 0.9267 (11) 0.5787 (12) 0.072 (6)*
H12B 0.6045 0.9683 0.6083 0.086*
C13B 0.4337 (13) 0.9206 (11) 0.6231 (13) 0.072 (6)*
H13B 0.4310 0.9599 0.6783 0.086*
C14B 0.3367 (14) 0.8543 (11) 0.5828 (13) 0.072 (6)*
H14B 0.2724 0.8464 0.6162 0.087*
C15B 0.2303 (14) 0.6716 (12) 0.5555 (13) 0.072 (6)*
C16B 0.3275 (14) 0.5400 (11) 0.6458 (12) 0.072 (6)*
H16D 0.4071 0.5038 0.6579 0.108*
H16E 0.2436 0.5076 0.6049 0.108*
H16F 0.3289 0.5583 0.7190 0.108*
C17B −0.1919 (15) 0.8163 (11) 0.2605 (13) 0.072 (6)*
C18B −0.0874 (14) 0.8485 (11) 0.2336 (12) 0.072 (6)*
S2A 0.0232 (4) 0.9234 (3) 0.6166 (4) 0.0572 (13)*
O3A 0.0642 (12) 0.8444 (8) 0.6881 (9) 0.115 (5)*
O4A −0.1156 (11) 0.9512 (8) 0.6065 (10) 0.115 (5)*
O5A 0.1279 (11) 0.9964 (8) 0.6804 (10) 0.115 (5)*
H51 0.1260 1.0045 0.7439 0.173*
O6A 0.0282 (11) 0.9101 (10) 0.5049 (10) 0.115 (4)*
S2B −0.0311 (5) 1.0685 (3) 0.8780 (4) 0.0692 (16)*
O3B −0.0818 (11) 1.1589 (9) 0.8583 (11) 0.132 (5)*
O4B −0.0199 (13) 1.0398 (9) 0.9921 (11) 0.133 (5)*
O5B −0.1420 (12) 1.0105 (9) 0.7869 (10) 0.133 (5)*
H52 −0.1264 1.0087 0.7283 0.200*
O6B 0.1001 (12) 1.0588 (9) 0.8650 (10) 0.133 (5)*

Geometric parameters (Å, °)

Cl1A—C10A 1.721 (17) O2B—C16B 1.44 (2)
S1A—C2A 1.709 (18) C2B—C3B 1.359 (19)
S1A—C17A 1.716 (13) C2B—H2B 0.9313
O1A—C15A 1.18 (2) C3B—C18B 1.41 (2)
O2A—C15A 1.33 (2) C3B—H3B 0.9305
O2A—C16A 1.443 (18) C4B—C18B 1.49 (2)
C2A—C3A 1.357 (17) C4B—N5B 1.51 (2)
C2A—H2A 0.9313 C4B—H4B1 0.9717
C3A—C18A 1.41 (2) C4B—H4B2 0.9710
C3A—H3A 0.9304 N5B—C6B 1.511 (19)
C4A—N5A 1.51 (2) N5B—C8B 1.519 (17)
C4A—C18A 1.522 (16) N5B—H5B 0.9092
C4A—H4A1 0.9699 C6B—C7B 1.52 (2)
C4A—H4A2 0.9674 C6B—H6B1 0.9690
N5A—C8A 1.508 (15) C6B—H6B2 0.9711
N5A—C6A 1.51 (2) C7B—C17B 1.49 (2)
N5A—H5A 0.9102 C7B—H7B1 0.9698
C6A—C7A 1.512 (17) C7B—H7B2 0.9703
C6A—H6A1 0.9690 C8B—C15B 1.51 (2)
C6A—H6A2 0.9712 C8B—C9B 1.53 (2)
C7A—C17A 1.49 (2) C8B—H8B 0.9795
C7A—H7A1 0.9694 C9B—C10B 1.38 (3)
C7A—H7A2 0.9697 C9B—C14B 1.40 (2)
C8A—C15A 1.50 (2) C10B—C11B 1.37 (2)
C8A—C9A 1.52 (2) C11B—C12B 1.37 (2)
C8A—H8A 0.9803 C11B—H11B 0.9312
C9A—C10A 1.38 (2) C12B—C13B 1.38 (3)
C9A—C14A 1.40 (2) C12B—H12B 0.9299
C10A—C11A 1.40 (2) C13B—C14B 1.38 (2)
C11A—C12A 1.39 (2) C13B—H13B 0.9301
C11A—H11A 0.9303 C14B—H14B 0.9306
C12A—C13A 1.36 (2) C16B—H16D 0.9596
C12A—H12A 0.9298 C16B—H16E 0.9613
C13A—C14A 1.38 (2) C16B—H16F 0.9609
C13A—H13A 0.9307 C17B—C18B 1.36 (2)
C14A—H14A 0.9297 S2A—O6A 1.447 (14)
C16A—H16A 0.9589 S2A—O4A 1.466 (13)
C16A—H16B 0.9591 S2A—O3A 1.470 (13)
C16A—H16C 0.9607 S2A—O5A 1.549 (12)
C17A—C18A 1.35 (2) O5A—H51 0.8200
Cl1B—C10B 1.733 (18) S2B—O6B 1.449 (15)
S1B—C2B 1.710 (18) S2B—O4B 1.468 (15)
S1B—C17B 1.714 (14) S2B—O3B 1.469 (15)
O1B—C15B 1.18 (2) S2B—O5B 1.549 (12)
O2B—C15B 1.302 (19) O5B—H52 0.8200
C2A—S1A—C17A 91.5 (7) C18B—C3B—H3B 124.2
C15A—O2A—C16A 117.1 (12) C18B—C4B—N5B 110.7 (14)
C3A—C2A—S1A 112.3 (12) C18B—C4B—H4B1 109.4
C3A—C2A—H2A 123.8 N5B—C4B—H4B1 109.6
S1A—C2A—H2A 123.9 C18B—C4B—H4B2 109.5
C2A—C3A—C18A 111.5 (14) N5B—C4B—H4B2 109.7
C2A—C3A—H3A 124.3 H4B1—C4B—H4B2 107.9
C18A—C3A—H3A 124.2 C4B—N5B—C6B 109.1 (10)
N5A—C4A—C18A 110.4 (11) C4B—N5B—C8B 113.2 (13)
N5A—C4A—H4A1 109.4 C6B—N5B—C8B 114.7 (11)
C18A—C4A—H4A1 109.5 C4B—N5B—H5B 106.5
N5A—C4A—H4A2 109.6 C6B—N5B—H5B 106.4
C18A—C4A—H4A2 109.7 C8B—N5B—H5B 106.4
H4A1—C4A—H4A2 108.3 N5B—C6B—C7B 112.3 (13)
C4A—N5A—C8A 112.0 (10) N5B—C6B—H6B1 109.2
C4A—N5A—C6A 110.4 (11) C7B—C6B—H6B1 109.2
C8A—N5A—C6A 112.4 (11) N5B—C6B—H6B2 109.0
C4A—N5A—H5A 107.1 C7B—C6B—H6B2 109.1
C8A—N5A—H5A 107.3 H6B1—C6B—H6B2 107.9
C6A—N5A—H5A 107.2 C17B—C7B—C6B 108.7 (14)
N5A—C6A—C7A 114.3 (13) C17B—C7B—H7B1 109.9
N5A—C6A—H6A1 108.7 C6B—C7B—H7B1 110.0
C7A—C6A—H6A1 108.7 C17B—C7B—H7B2 109.9
N5A—C6A—H6A2 108.6 C6B—C7B—H7B2 109.9
C7A—C6A—H6A2 108.7 H7B1—C7B—H7B2 108.3
H6A1—C6A—H6A2 107.6 C15B—C8B—N5B 108.6 (13)
C17A—C7A—C6A 108.6 (12) C15B—C8B—C9B 110.1 (12)
C17A—C7A—H7A1 109.9 N5B—C8B—C9B 110.1 (12)
C6A—C7A—H7A1 110.1 C15B—C8B—H8B 109.3
C17A—C7A—H7A2 109.9 N5B—C8B—H8B 109.3
C6A—C7A—H7A2 110.0 C9B—C8B—H8B 109.4
H7A1—C7A—H7A2 108.4 C10B—C9B—C14B 117.3 (14)
C15A—C8A—N5A 109.6 (11) C10B—C9B—C8B 122.5 (15)
C15A—C8A—C9A 110.4 (13) C14B—C9B—C8B 120.0 (16)
N5A—C8A—C9A 108.7 (12) C11B—C10B—C9B 121.7 (16)
C15A—C8A—H8A 109.3 C11B—C10B—Cl1B 119.3 (14)
N5A—C8A—H8A 109.5 C9B—C10B—Cl1B 119.0 (11)
C9A—C8A—H8A 109.4 C12B—C11B—C10B 119.3 (16)
C10A—C9A—C14A 119.0 (15) C12B—C11B—H11B 120.4
C10A—C9A—C8A 122.2 (15) C10B—C11B—H11B 120.3
C14A—C9A—C8A 118.3 (13) C11B—C12B—C13B 121.7 (14)
C9A—C10A—C11A 123.2 (16) C11B—C12B—H12B 119.3
C9A—C10A—Cl1A 115.6 (12) C13B—C12B—H12B 119.0
C11A—C10A—Cl1A 120.8 (11) C12B—C13B—C14B 117.8 (16)
C12A—C11A—C10A 114.0 (13) C12B—C13B—H13B 121.1
C12A—C11A—H11A 122.8 C14B—C13B—H13B 121.1
C10A—C11A—H11A 123.2 C13B—C14B—C9B 122.1 (16)
C13A—C12A—C11A 125.4 (16) C13B—C14B—H14B 118.9
C13A—C12A—H12A 117.3 C9B—C14B—H14B 119.1
C11A—C12A—H12A 117.3 O1B—C15B—O2B 122.7 (16)
C12A—C13A—C14A 118.2 (16) O1B—C15B—C8B 128.3 (14)
C12A—C13A—H13A 121.0 O2B—C15B—C8B 108.3 (14)
C14A—C13A—H13A 120.8 O2B—C16B—H16D 109.6
C13A—C14A—C9A 119.9 (13) O2B—C16B—H16E 109.5
C13A—C14A—H14A 120.0 H16D—C16B—H16E 109.4
C9A—C14A—H14A 120.1 O2B—C16B—H16F 109.6
O1A—C15A—O2A 124.9 (15) H16D—C16B—H16F 109.4
O1A—C15A—C8A 125.7 (15) H16E—C16B—H16F 109.3
O2A—C15A—C8A 109.3 (14) C18B—C17B—C7B 125.1 (13)
O2A—C16A—H16A 109.5 C18B—C17B—S1B 110.7 (12)
O2A—C16A—H16B 109.4 C7B—C17B—S1B 123.0 (12)
H16A—C16A—H16B 109.6 C17B—C18B—C3B 113.9 (13)
O2A—C16A—H16C 109.3 C17B—C18B—C4B 122.3 (14)
H16A—C16A—H16C 109.5 C3B—C18B—C4B 123.7 (15)
H16B—C16A—H16C 109.5 O6A—S2A—O4A 111.8 (7)
C18A—C17A—C7A 123.8 (12) O6A—S2A—O3A 111.7 (8)
C18A—C17A—S1A 111.0 (12) O4A—S2A—O3A 109.3 (8)
C7A—C17A—S1A 124.1 (11) O6A—S2A—O5A 108.6 (8)
C17A—C18A—C3A 113.7 (11) O4A—S2A—O5A 107.7 (7)
C17A—C18A—C4A 123.6 (14) O3A—S2A—O5A 107.6 (6)
C3A—C18A—C4A 122.7 (13) S2A—O5A—H51 109.5
C2B—S1B—C17B 91.7 (8) O6B—S2B—O4B 111.6 (7)
C15B—O2B—C16B 117.0 (13) O6B—S2B—O3B 111.8 (8)
C3B—C2B—S1B 112.1 (12) O4B—S2B—O3B 109.5 (8)
C3B—C2B—H2B 123.8 O6B—S2B—O5B 108.6 (8)
S1B—C2B—H2B 124.0 O4B—S2B—O5B 107.6 (8)
C2B—C3B—C18B 111.5 (15) O3B—S2B—O5B 107.6 (7)
C2B—C3B—H3B 124.3 S2B—O5B—H52 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5A—H5A···O3A 0.91 1.91 2.785 (16) 161
N5B—H5B···O6A 0.91 1.94 2.795 (19) 157
O5A—H51···O6B 0.82 1.85 2.640 (17) 161
O5B—H52···O4A 0.82 1.82 2.567 (17) 152
C4A—H4A1···O4Bi 0.97 2.35 3.17 (2) 142
C4A—H4A2···O1B 0.97 2.52 3.225 (17) 129
C3B—H3B···O4Bii 0.93 2.41 3.28 (2) 154
C6A—H6A2···O3Bi 0.97 2.31 3.175 (19) 149
C4B—H4B2···O3Biii 0.97 2.23 3.13 (2) 154

Symmetry codes: (i) −x, y−1/2, −z+2; (ii) x, y, z−1; (iii) −x, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5082).

References

  1. Badorc, A. & Frehel, D. (1989). US Patent No. 4 847 265.
  2. Bousquet, A., Castro, B. & Germain, J. S. (2003). US Patent No. 6 504 030.
  3. Chernyshev, V. V., Machula, A. A., Kukushkin, S. Y. & Velikodny, Y. A. (2009). Acta Cryst. E65, o2020–o2021. [DOI] [PMC free article] [PubMed]
  4. Huber (2002). G670 Imaging Plate Guinier Camera Software Huber Diffraktionstechnik GmbH, Rimsting, Germany.
  5. Lifshitz-Liron, R., Kovalevski-Ishai, E., Wizel, S., Avhar-Maydan, S. & Lidor-Hadas, R. (2006). US Patent No. 7 074 928.
  6. Raijada, D. K., Prasad, B., Paudel, A., Shah, R. P. & Singh, S. (2010). J. Pharm. Biomed. Anal.52, 332–344. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Song, L., Li, M. & Gong, J. (2010). J. Chem. Eng. Data DOI:10.1021/je100022w.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Srivastava, A., Mishra, S., Tandon, P., Patel, S., Ayala, A. P., Bansal, A. K. & Siesler, H. W. (2010). J. Mol. Struct.964, 88–96.
  11. Toraya, H. (1986). J. Appl. Cryst.19, 440–447.
  12. Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst.18, 367–370.
  13. Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr.216, 5–9.
  14. Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst.25, 447–451.
  15. Zupancic, V., Kotar-Jordan, B., Plevnik, M., Smrkolj, M. & Vrecer, F. (2010). Pharmazie, 65, 388–389. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028783/lh5082sup1.cif

e-66-o2101-sup1.cif (22.8KB, cif)

Rietveld powder data: contains datablocks I. DOI: 10.1107/S1600536810028783/lh5082Isup2.rtv

e-66-o2101-Isup2.rtv (286KB, rtv)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES