Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 14;66(Pt 8):o2022. doi: 10.1107/S1600536810026929

(S)-3-Chloro-4-(4-ethyl­piperazin-1-yl)-5-[(1R,2S,5R)-2-isopropyl-5-methyl­cyclo­hex­yloxy]furan-2(5H)-one

Jian-Hua Fu a, Zhao-Yang Wang a,*, Kai Yang a, Chao-Xu Mao a
PMCID: PMC3007345  PMID: 21588333

Abstract

The title compound, C20H33ClN2O3, was obtained via a tandem asymmetric Michael addition–elimination reaction of 3,4-dichloro-5-(S)-(l-menth­yloxy)furan-2(5H)-one and 1-ethyl­piperazine in the presence of potassium fluoride. The mol­ecular structure contains an approximately planar five-membered furan­one ring [maximum atomic deviation = 0.024 (2) Å] and two six-membered rings adopting chair conformations. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

The title compound is a 4-amino-2(5H)-furan­one derivative. For the biological activity of 4-amino-2(5H)-furan­ones, see: Kimura et al. (2000); Tanoury et al. (2008). For the asymmetric Michael addition reactions of 2(5H)-furan­ones, see: Bertrand et al. (2000); He et al. (2006); Sarma et al. (2007). For the synthesis of the title compound, see: Song et al. (2009).graphic file with name e-66-o2022-scheme1.jpg

Experimental

Crystal data

  • C20H33ClN2O3

  • M r = 384.93

  • Orthorhombic, Inline graphic

  • a = 8.7168 (15) Å

  • b = 10.1470 (18) Å

  • c = 24.478 (4) Å

  • V = 2165.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.16 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.956, T max = 0.969

  • 12202 measured reflections

  • 4384 independent reflections

  • 2730 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.107

  • S = 1.01

  • 4384 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 1866 Friedel pairs

  • Flack parameter: 0.00 (8)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026929/xu2787sup1.cif

e-66-o2022-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026929/xu2787Isup2.hkl

e-66-o2022-Isup2.hkl (214.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.98 2.53 3.361 (4) 142

Symmetry code: (i) Inline graphic.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

supplementary crystallographic information

Comment

With their poly-functional groups and highly active reactivity, 5-menthyloxy-2(5H)-furanones, serving as a kind of important building blocks, were widely used for the synthesis of a variety of chiral 5-menthyloxy-2(5H)-furanone derivatives. Until now, the asymmetric Michael addition reactions of 2(5H)-furanone with nucleophiles, to construct C-X (X=N, O, S, P, C) bond, have been a prominent objective in furanone chemistry (Bertrand et al., 2000; He et al., 2006; Sarma et al., 2007). At the same time, 4-amino-2(5H)-furanone is an attractive moiety in chemical, pharmaceutical and agrochemical research (Kimura et al., 2000; Tanoury et al., 2008).

Therefore we are interested in the tandem Michael addition-elimination reaction of the chiral synthon 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone and 1-ethylpiperazine in the present of potassium fluoride. The structure of the title compound (I) is illustrated in Fig. 1. The crystal structure of the title compound which has four chiral centers ( C4(S), C5(R), C6(S), C9(R)) contains a five-membered furanone ring and two six-membered rings connected each other via C4—O3—C5 ether bond and C3—N2 bond. The furanone ring of C2—C3—C4—O1—C1 is approximately planar, whereas the six-membered ring displays a chair conformation.

Experimental

The precursor 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone was prepared according to the literature procedure (Song et al., 2009). After the mixture of 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone (2.0 mmol) and potassium fluoride (6.0 mmol) was dissolved in absolute tetrahydrofuran(2.0 mL) under nitrogen atmosphere, tetrahydrofuran solution of 1-ethylpiperazine (3.0 mmol) was added. The reaction was carried out under the stirring at room temperature for 24 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.280 g (36.1%).

Refinement

H atoms were positioned in calculated positions with C—H = 0.93-0.98 Å and were refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Perspective view of the crystal packing.

Crystal data

C20H33ClN2O3 F(000) = 832.0
Mr = 384.93 Dx = 1.181 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1893 reflections
a = 8.7168 (15) Å θ = 2.6–19.0°
b = 10.1470 (18) Å µ = 0.20 mm1
c = 24.478 (4) Å T = 298 K
V = 2165.1 (6) Å3 Block, colourless
Z = 4 0.23 × 0.20 × 0.16 mm

Data collection

Bruker APEXII area-detector diffractometer 4384 independent reflections
Radiation source: fine-focus sealed tube 2730 reflections with I > 2σ(I)
graphite Rint = 0.045
φ and ω scan θmax = 26.3°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.956, Tmax = 0.969 k = −8→12
12202 measured reflections l = −30→30

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.0387P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
4384 reflections Δρmax = 0.13 e Å3
240 parameters Δρmin = −0.17 e Å3
0 restraints Absolute structure: Flack (1983), 1866 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (8)

Special details

Experimental. Data for (I): [α]20°D = -32.5° (c 0.452, CH3CH2OH); 1H NMR (400 MHz, CDCl3, TMS): 0.720 (3H, d, J = 6.8 Hz, CH3), 0.766-1.142 (12H, m, CH, CH2, 3CH3), 1.221-1.388 (2H, m, 2CH), 1.611-1.660 (2H, m, CH2), 2.103-2.227 (2H, m, CH2), 2.435 (2H, d, J = 7.2 Hz, CH2), 2.495-2.515 (4H, m, 2CH2), 3.484-3.548 (1H, ddd, J = 4.4 Hz, J = 4.4 Hz,J = 4.4 Hz,CH), 3.591-3.624 (2H, m, CH2), 3.729-3.761 (2H, m, CH2), 5.751 (1H, s, CH), ESI-MS, m/z (%): Calcd for C20H34ClN2O3+([M+H]+): 385.22, Found: 385.39 (72.0).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.92355 (9) −0.19339 (9) 0.15783 (3) 0.0824 (3)
C1 1.0114 (3) −0.1277 (3) 0.25997 (11) 0.0600 (7)
C2 0.8953 (3) −0.1150 (3) 0.21895 (10) 0.0527 (7)
C3 0.7814 (3) −0.0351 (2) 0.23643 (9) 0.0464 (6)
C4 0.8249 (3) 0.0073 (3) 0.29384 (9) 0.0486 (6)
H4 0.8300 0.1035 0.2967 0.058*
C5 0.7051 (3) 0.0215 (3) 0.38183 (9) 0.0526 (6)
H5 0.6699 0.1120 0.3756 0.063*
C6 0.5819 (3) −0.0524 (3) 0.41368 (10) 0.0604 (7)
H6 0.6217 −0.1414 0.4200 0.072*
C7 0.5633 (4) 0.0115 (4) 0.46984 (11) 0.0893 (10)
H7A 0.5220 0.0997 0.4653 0.107*
H7B 0.4903 −0.0391 0.4911 0.107*
C8 0.7140 (4) 0.0195 (4) 0.50074 (12) 0.1017 (12)
H8A 0.6975 0.0648 0.5351 0.122*
H8B 0.7494 −0.0690 0.5089 0.122*
C9 0.8364 (4) 0.0913 (4) 0.46850 (12) 0.0842 (10)
H9 0.8015 0.1820 0.4626 0.101*
C11 0.9897 (4) 0.0966 (4) 0.49839 (12) 0.1230 (15)
H11A 0.9775 0.1439 0.5321 0.185*
H11B 1.0640 0.1407 0.4760 0.185*
H11C 1.0241 0.0086 0.5060 0.185*
C12 0.4297 (3) −0.0685 (3) 0.38336 (12) 0.0701 (8)
H12 0.4543 −0.1031 0.3470 0.084*
C13 0.3255 (4) −0.1697 (4) 0.41080 (14) 0.1061 (13)
H13A 0.3810 −0.2504 0.4161 0.159*
H13B 0.2378 −0.1859 0.3880 0.159*
H13C 0.2921 −0.1365 0.4455 0.159*
C14 0.3423 (4) 0.0598 (4) 0.37461 (14) 0.0934 (11)
H14A 0.2544 0.0436 0.3519 0.140*
H14B 0.4081 0.1229 0.3571 0.140*
H14C 0.3092 0.0938 0.4093 0.140*
N2 0.6474 (2) 0.0035 (2) 0.21506 (8) 0.0520 (5)
C15 0.5990 (3) −0.0392 (3) 0.16045 (10) 0.0684 (8)
H15A 0.6371 −0.1275 0.1535 0.082*
H15B 0.6425 0.0192 0.1332 0.082*
C16 0.4266 (3) −0.0384 (3) 0.15570 (10) 0.0656 (8)
H16A 0.3968 −0.0654 0.1192 0.079*
H16B 0.3831 −0.1005 0.1815 0.079*
N1 0.3681 (2) 0.0924 (2) 0.16674 (9) 0.0557 (6)
C17 0.4034 (3) 0.1223 (3) 0.22317 (10) 0.0628 (8)
H17A 0.3579 0.0559 0.2466 0.075*
H17B 0.3591 0.2069 0.2328 0.075*
C18 0.5741 (3) 0.1263 (2) 0.23249 (11) 0.0581 (7)
H18A 0.6178 0.1995 0.2123 0.070*
H18B 0.5944 0.1406 0.2710 0.070*
C19 0.2032 (3) 0.1040 (3) 0.15658 (12) 0.0750 (9)
H19A 0.1686 0.1891 0.1698 0.090*
H19B 0.1503 0.0367 0.1774 0.090*
C20 0.1589 (4) 0.0909 (4) 0.09789 (13) 0.0967 (12)
H20A 0.2230 0.1468 0.0760 0.145*
H20B 0.0536 0.1165 0.0934 0.145*
H20C 0.1715 0.0010 0.0865 0.145*
O3 0.71812 (18) −0.04391 (16) 0.32993 (6) 0.0511 (4)
O1 0.97260 (19) −0.05115 (19) 0.30335 (7) 0.0606 (5)
O2 1.1286 (2) −0.1903 (2) 0.25964 (9) 0.0842 (7)
C10 0.8549 (3) 0.0261 (3) 0.41285 (10) 0.0655 (8)
H10A 0.9300 0.0747 0.3916 0.079*
H10B 0.8931 −0.0629 0.4178 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0705 (5) 0.0943 (6) 0.0825 (5) 0.0125 (5) 0.0059 (4) −0.0335 (5)
C1 0.0460 (16) 0.0667 (19) 0.0674 (18) −0.0018 (15) 0.0059 (15) −0.0001 (15)
C2 0.0478 (16) 0.0528 (17) 0.0576 (16) 0.0012 (14) 0.0048 (13) −0.0056 (13)
C3 0.0434 (14) 0.0465 (16) 0.0492 (14) −0.0033 (13) 0.0018 (12) 0.0005 (12)
C4 0.0420 (14) 0.0505 (16) 0.0532 (15) 0.0018 (12) 0.0031 (11) 0.0020 (13)
C5 0.0592 (16) 0.0538 (16) 0.0448 (14) 0.0042 (15) 0.0001 (12) −0.0004 (13)
C6 0.0641 (18) 0.0607 (17) 0.0564 (16) 0.0063 (16) 0.0095 (14) 0.0025 (14)
C7 0.092 (2) 0.120 (3) 0.0563 (18) 0.002 (2) 0.0142 (17) −0.0032 (19)
C8 0.109 (3) 0.148 (4) 0.0476 (17) 0.007 (3) 0.0026 (19) 0.005 (2)
C9 0.091 (2) 0.104 (3) 0.0579 (19) 0.005 (2) −0.0121 (17) −0.0102 (19)
C11 0.114 (3) 0.186 (4) 0.069 (2) −0.008 (3) −0.029 (2) −0.019 (3)
C12 0.0611 (19) 0.076 (2) 0.0736 (18) −0.0031 (18) 0.0139 (16) −0.0076 (17)
C13 0.092 (3) 0.111 (3) 0.115 (3) −0.026 (2) 0.037 (2) −0.002 (2)
C14 0.069 (2) 0.111 (3) 0.101 (3) 0.019 (2) 0.0029 (18) −0.004 (2)
N2 0.0535 (13) 0.0548 (13) 0.0477 (12) 0.0074 (11) −0.0039 (9) −0.0076 (10)
C15 0.074 (2) 0.079 (2) 0.0519 (16) 0.0173 (17) −0.0076 (14) −0.0158 (15)
C16 0.0697 (19) 0.069 (2) 0.0585 (16) 0.0001 (17) −0.0149 (15) −0.0098 (15)
N1 0.0487 (13) 0.0603 (15) 0.0582 (13) 0.0017 (11) −0.0077 (10) −0.0035 (12)
C17 0.0540 (17) 0.070 (2) 0.0643 (18) 0.0115 (15) −0.0043 (14) −0.0135 (15)
C18 0.0570 (16) 0.0541 (17) 0.0631 (16) 0.0097 (14) −0.0130 (14) −0.0084 (14)
C19 0.0573 (18) 0.090 (2) 0.077 (2) −0.0004 (17) −0.0157 (16) −0.0069 (18)
C20 0.083 (2) 0.113 (3) 0.094 (2) 0.000 (2) −0.0368 (19) 0.008 (2)
O3 0.0510 (10) 0.0557 (11) 0.0465 (9) −0.0049 (9) 0.0040 (8) −0.0008 (8)
O1 0.0435 (10) 0.0781 (13) 0.0601 (11) 0.0085 (10) −0.0047 (8) −0.0019 (10)
O2 0.0541 (12) 0.0954 (16) 0.1032 (17) 0.0258 (12) −0.0054 (11) −0.0103 (14)
C10 0.0653 (18) 0.079 (2) 0.0524 (16) −0.0018 (17) −0.0031 (13) 0.0017 (15)

Geometric parameters (Å, °)

Cl1—C2 1.712 (2) C12—H12 0.9800
C1—O2 1.203 (3) C13—H13A 0.9600
C1—O1 1.358 (3) C13—H13B 0.9600
C1—C2 1.431 (4) C13—H13C 0.9600
C2—C3 1.351 (3) C14—H14A 0.9600
C3—N2 1.338 (3) C14—H14B 0.9600
C3—C4 1.518 (3) C14—H14C 0.9600
C4—O3 1.384 (3) N2—C18 1.463 (3)
C4—O1 1.437 (3) N2—C15 1.468 (3)
C4—H4 0.9800 C15—C16 1.507 (4)
C5—O3 1.438 (3) C15—H15A 0.9700
C5—C10 1.511 (3) C15—H15B 0.9700
C5—C6 1.524 (4) C16—N1 1.447 (3)
C5—H5 0.9800 C16—H16A 0.9700
C6—C7 1.529 (4) C16—H16B 0.9700
C6—C12 1.529 (4) N1—C17 1.447 (3)
C6—H6 0.9800 N1—C19 1.463 (3)
C7—C8 1.518 (4) C17—C18 1.506 (3)
C7—H7A 0.9700 C17—H17A 0.9700
C7—H7B 0.9700 C17—H17B 0.9700
C8—C9 1.514 (5) C18—H18A 0.9700
C8—H8A 0.9700 C18—H18B 0.9700
C8—H8B 0.9700 C19—C20 1.494 (4)
C9—C10 1.523 (4) C19—H19A 0.9700
C9—C11 1.524 (4) C19—H19B 0.9700
C9—H9 0.9800 C20—H20A 0.9600
C11—H11A 0.9600 C20—H20B 0.9600
C11—H11B 0.9600 C20—H20C 0.9600
C11—H11C 0.9600 C10—H10A 0.9700
C12—C14 1.524 (4) C10—H10B 0.9700
C12—C13 1.527 (4)
O2—C1—O1 121.2 (3) C12—C13—H13C 109.5
O2—C1—C2 130.0 (3) H13A—C13—H13C 109.5
O1—C1—C2 108.7 (2) H13B—C13—H13C 109.5
C3—C2—C1 110.6 (2) C12—C14—H14A 109.5
C3—C2—Cl1 131.4 (2) C12—C14—H14B 109.5
C1—C2—Cl1 118.0 (2) H14A—C14—H14B 109.5
N2—C3—C2 133.9 (2) C12—C14—H14C 109.5
N2—C3—C4 119.8 (2) H14A—C14—H14C 109.5
C2—C3—C4 106.2 (2) H14B—C14—H14C 109.5
O3—C4—O1 110.14 (19) C3—N2—C18 121.1 (2)
O3—C4—C3 108.46 (19) C3—N2—C15 121.4 (2)
O1—C4—C3 104.89 (19) C18—N2—C15 113.0 (2)
O3—C4—H4 111.1 N2—C15—C16 110.8 (2)
O1—C4—H4 111.1 N2—C15—H15A 109.5
C3—C4—H4 111.1 C16—C15—H15A 109.5
O3—C5—C10 113.0 (2) N2—C15—H15B 109.5
O3—C5—C6 106.3 (2) C16—C15—H15B 109.5
C10—C5—C6 111.5 (2) H15A—C15—H15B 108.1
O3—C5—H5 108.6 N1—C16—C15 110.0 (2)
C10—C5—H5 108.6 N1—C16—H16A 109.7
C6—C5—H5 108.6 C15—C16—H16A 109.7
C5—C6—C7 109.0 (2) N1—C16—H16B 109.7
C5—C6—C12 114.6 (2) C15—C16—H16B 109.7
C7—C6—C12 112.9 (2) H16A—C16—H16B 108.2
C5—C6—H6 106.6 C17—N1—C16 107.2 (2)
C7—C6—H6 106.6 C17—N1—C19 110.7 (2)
C12—C6—H6 106.6 C16—N1—C19 112.9 (2)
C8—C7—C6 112.2 (3) N1—C17—C18 111.1 (2)
C8—C7—H7A 109.2 N1—C17—H17A 109.4
C6—C7—H7A 109.2 C18—C17—H17A 109.4
C8—C7—H7B 109.2 N1—C17—H17B 109.4
C6—C7—H7B 109.2 C18—C17—H17B 109.4
H7A—C7—H7B 107.9 H17A—C17—H17B 108.0
C9—C8—C7 112.1 (3) N2—C18—C17 111.4 (2)
C9—C8—H8A 109.2 N2—C18—H18A 109.4
C7—C8—H8A 109.2 C17—C18—H18A 109.4
C9—C8—H8B 109.2 N2—C18—H18B 109.4
C7—C8—H8B 109.2 C17—C18—H18B 109.4
H8A—C8—H8B 107.9 H18A—C18—H18B 108.0
C8—C9—C10 109.4 (3) N1—C19—C20 114.2 (3)
C8—C9—C11 112.6 (3) N1—C19—H19A 108.7
C10—C9—C11 110.6 (3) C20—C19—H19A 108.7
C8—C9—H9 108.0 N1—C19—H19B 108.7
C10—C9—H9 108.0 C20—C19—H19B 108.7
C11—C9—H9 108.0 H19A—C19—H19B 107.6
C9—C11—H11A 109.5 C19—C20—H20A 109.5
C9—C11—H11B 109.5 C19—C20—H20B 109.5
H11A—C11—H11B 109.5 H20A—C20—H20B 109.5
C9—C11—H11C 109.5 C19—C20—H20C 109.5
H11A—C11—H11C 109.5 H20A—C20—H20C 109.5
H11B—C11—H11C 109.5 H20B—C20—H20C 109.5
C14—C12—C13 109.8 (3) C4—O3—C5 116.3 (2)
C14—C12—C6 114.3 (3) C1—O1—C4 109.41 (19)
C13—C12—C6 112.0 (3) C5—C10—C9 111.8 (2)
C14—C12—H12 106.8 C5—C10—H10A 109.3
C13—C12—H12 106.8 C9—C10—H10A 109.3
C6—C12—H12 106.8 C5—C10—H10B 109.3
C12—C13—H13A 109.5 C9—C10—H10B 109.3
C12—C13—H13B 109.5 H10A—C10—H10B 107.9
H13A—C13—H13B 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···O2i 0.98 2.53 3.361 (4) 142

Symmetry codes: (i) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2787).

References

  1. Bertrand, S., Hoffmann, N. & Pete, J. P. (2000). Eur. J. Org. Chem.12, 2227–2238. [DOI] [PubMed]
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. He, L., Liu, Y.-M., Li, M. & Chen, Q.-H. (2006). Chem. J. Chin. Univ.27, 464–467.
  6. Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831. [DOI] [PubMed]
  7. Sarma, D. K., Zhang, J. & Curran, T. T. (2007). J. Org. Chem.72, 3311–3318. [DOI] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Song, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem.11, 1804–1810.
  11. Tanoury, G. J., Chen, M.-Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett.10, 185–188. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026929/xu2787sup1.cif

e-66-o2022-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026929/xu2787Isup2.hkl

e-66-o2022-Isup2.hkl (214.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES