Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 31;66(Pt 8):m1032. doi: 10.1107/S1600536810029545

[μ-1,2-Bis(diphenyl­phosphino)ethane-κ2 P:P′]bis­{[1,2-bis­(diphenyl­phosphino)ethane-κ2 P,P′]cyanidocopper(I)} methanol disolvate

Rong Wang a, Ye-Lan Xiao a, Qiong-Hua Jin a,*, Cun-Lin Zhang b
PMCID: PMC3007356  PMID: 21588106

Abstract

The title centrosymmetric complex, [Cu2(CN)2(C26H24P2)3]·2CH3OH, consists of two five-membered [Cu(dppe)CN] rings [dppe is 1,2-bis­(diphenyl­phosphino)ethane] bridged by one μ2-dppe ligand, and two methanol solvent mol­ecules. The angles around the central metal atom indicate that each CuI atom is located in the center of a distorted tetra­hedron. The coordination sphere of each CuI atom is formed by three P atoms from two dppe ligands, and one C atom from the cyanide ligand. The crystal structure is stabilized by O—H⋯N hydrogen bonds, which are formed by the O—H donor group from methanol and the N-atom acceptor from a cyanide ligand.

Related literature

For related structures, see: Jin et al. (2009); Effendy et al. (2006); Sivasankar et al. (2004); Di Nicola et al. (2006); Saravanabharathi et al. (2002). For general background to the photophysical properties of similar compounds, see: Cingolani et al. (2005); Song et al. (2007).graphic file with name e-66-m1032-scheme1.jpg

Experimental

Crystal data

  • [Cu2(CN)2(C26H24P2)3]·2CH4O

  • M r = 1438.38

  • Monoclinic, Inline graphic

  • a = 23.423 (2) Å

  • b = 17.7912 (16) Å

  • c = 17.6614 (18) Å

  • β = 92.194 (1)°

  • V = 7354.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 298 K

  • 0.44 × 0.40 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.732, T max = 0.833

  • 18242 measured reflections

  • 6494 independent reflections

  • 4140 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.149

  • S = 1.06

  • 6494 reflections

  • 425 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810029545/su2196sup1.cif

e-66-m1032-sup1.cif (30.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029545/su2196Isup2.hkl

e-66-m1032-Isup2.hkl (317.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.02 2.829 (11) 171

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the National Keystone Basic Research Program (973 Program – grant Nos. 2007CB310408 and 2006CB302901), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of the Beijing Municipality and the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

supplementary crystallographic information

Comment

Copper(I) complexes containing the diphosphine ligands bis(diphenylphosphinoethane)(Dppe) are extensively studied because of their interesting structures and photophysical properties (Cingolani et al., 2005; Song et al., 2007). dppe is a very efficient bridging bidentate ligand and its chelating tendency is very suitable to lock the metal atom. As a part of the extension of our study on the systematic structural chemistry of copper(I) complexes with ligands containing phosphine and nitrogen atoms (Jin et al., 2009), we synthesized the new title complex, (1), in the presence of (NH4)2WS4 and 1,10-phenanthroline.

The molecular structure of complex (1) is depicted in Fig. 1. It consists of two five-membered [Cu(dppe)CN] rings that are bridged by one µ2-dppe ligand, and two methanol solvent molecules. The copper atom is four-coordinated by three P-atoms from two dppe ligands, and one C-atom from the cyanide ion. The Cu—P distances of 2.2832 (12) Å, 2.3041 (13) Å and 2.3291 (12) Å are longer than those in complex [Cu2(dppe)3(CN)2].2(CH3CN) (2), which vary from 2.2784 (4) to 2.3158 (4) Å (Effendy et al., 2006), but are almost equal to those in complex [Cu2(dppe)3(CN)2] (3), which vary from 2.2808 (8) to 2.3276 (8) Å (Saravanabharathi et al., 2002). The Cu—C distance of 1.952 (6)Å in complex (1) is shorter than the same distance observed in complexes (2) and (3); 1.975 (2) Å and 1.964 (4) Å, respectively.

In (1) the P—Cu—C angles are in the range 107.59 (14) - 119.11 (14)°, and the P—Cu—P angles are in the range 89.03 (4) - 115.07 (5)°. This confirms the distored tetrahedral environment around the copper(I) atom. These values are very close to those observed for complex (3), where the P—Cu—C angles range from 107.05 (9) to 120.73 (9)°, and the P—Cu—P angles are in the range 89.22 (3) - 115.16 (3) °.

Though both (NH4)2WS4 and 1,10-phenanthroline were starting materials in the prepartion of (1), they do not appear in the final product. This may be related to the solvent methanol because the O—H donor from methanol can form an O—H···N hydrogen bond with the N atom from the cyanide anion (Table 1), and this can stablize the molecular structure of the complex.

The crystal structure of complex (1) is similar with that of complex (2). Other similar complexes are adducts CuX:dppe:X, where X is a simple inorganic anion, for example, a halide (Effendy et al., 2006; Di Nicola et al., 2006), thiocyanate (Saravanabharathi et al., 2002), nitrate (Saravanabharathi et al., 2002), perchlorate (Sivasankar et al., 2004; Jin et al., 2009) and tetrafluoroborate (Jin et al., 2009).

Experimental

A mixture of CuCN, bis(diphenylphosphinoethane), (NH4)2WS4 and 1,10-Phenanthroline, in the molar ratio of 3:3:1:1 in CH2Cl2 and MeOH (10 ml,V/V=1/1), was stirred for 4 h at RT, then filtered. Subsequent slow evaporation of the filtrate resulted in the formation of yellow crystals of complex (1). Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement

The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H 0.93 - 0.96 Å with Uiso(H) = k × Ueq(parent O or C-atom), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of complex (1), with the displacement ellipsoids drawn at the 50% probability level [Symmetry code: (i) = -x+1/2, -y+1/2, -z+1; Hydrogen atoms have been omitted for clarity].

Crystal data

[Cu2(CN)2(C26H24P2)3]·2CH4O F(000) = 3000
Mr = 1438.38 Dx = 1.299 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4634 reflections
a = 23.423 (2) Å θ = 2.3–27.3°
b = 17.7912 (16) Å µ = 0.76 mm1
c = 17.6614 (18) Å T = 298 K
β = 92.194 (1)° Block, yellow
V = 7354.6 (12) Å3 0.44 × 0.40 × 0.25 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 6494 independent reflections
Radiation source: fine-focus sealed tube 4140 reflections with I > 2σ(I)
graphite Rint = 0.044
phi and ω scans θmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −23→27
Tmin = 0.732, Tmax = 0.833 k = −21→21
18242 measured reflections l = −17→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.063P)2 + 16.0608P] where P = (Fo2 + 2Fc2)/3
6494 reflections (Δ/σ)max = 0.001
425 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.26534 (2) 0.24069 (3) 0.29813 (3) 0.03662 (18)
N1 0.3058 (2) 0.4054 (3) 0.3181 (3) 0.0646 (13)
O1 0.0834 (4) 0.0342 (6) 0.6565 (6) 0.243 (5)
H1 0.1155 0.0494 0.6686 0.292*
P1 0.28874 (4) 0.17964 (6) 0.40872 (6) 0.0305 (3)
P2 0.30147 (5) 0.18670 (7) 0.18979 (7) 0.0372 (3)
P3 0.17430 (5) 0.21480 (7) 0.25132 (7) 0.0379 (3)
C1 0.2892 (2) 0.3452 (3) 0.3102 (3) 0.0437 (11)
C2 0.28034 (17) 0.2350 (2) 0.4956 (2) 0.0332 (10)
H2A 0.2907 0.2038 0.5391 0.040*
H2B 0.3066 0.2771 0.4954 0.040*
C3 0.25244 (17) 0.0913 (2) 0.4259 (2) 0.0328 (10)
C4 0.2433 (2) 0.0433 (3) 0.3649 (3) 0.0463 (12)
H4 0.2558 0.0573 0.3175 0.056*
C5 0.2161 (2) −0.0251 (3) 0.3731 (3) 0.0608 (15)
H5 0.2103 −0.0566 0.3315 0.073*
C6 0.1977 (2) −0.0462 (3) 0.4427 (4) 0.0640 (15)
H6 0.1798 −0.0924 0.4486 0.077*
C7 0.2057 (2) 0.0011 (3) 0.5039 (3) 0.0594 (14)
H7 0.1926 −0.0126 0.5510 0.071*
C8 0.2332 (2) 0.0687 (3) 0.4953 (3) 0.0460 (12)
H8 0.2389 0.0999 0.5372 0.055*
C9 0.36466 (17) 0.1560 (2) 0.4211 (2) 0.0359 (10)
C10 0.4037 (2) 0.1964 (3) 0.3819 (3) 0.0572 (14)
H10 0.3912 0.2327 0.3472 0.069*
C11 0.4621 (2) 0.1835 (4) 0.3935 (4) 0.0745 (18)
H11 0.4882 0.2116 0.3670 0.089*
C12 0.4810 (2) 0.1305 (4) 0.4432 (3) 0.0676 (17)
H12 0.5200 0.1215 0.4501 0.081*
C13 0.4429 (2) 0.0898 (3) 0.4834 (3) 0.0628 (15)
H13 0.4559 0.0538 0.5181 0.075*
C14 0.3848 (2) 0.1026 (3) 0.4721 (3) 0.0504 (13)
H14 0.3590 0.0747 0.4993 0.060*
C15 0.23651 (19) 0.1723 (3) 0.1290 (3) 0.0456 (12)
H15A 0.2270 0.2188 0.1028 0.055*
H15B 0.2441 0.1345 0.0912 0.055*
C16 0.18567 (19) 0.1475 (3) 0.1747 (3) 0.0438 (11)
H16A 0.1929 0.0979 0.1958 0.053*
H16B 0.1516 0.1447 0.1417 0.053*
C17 0.33868 (19) 0.0963 (3) 0.1854 (2) 0.0412 (11)
C18 0.3107 (2) 0.0287 (3) 0.1734 (3) 0.0490 (12)
H18 0.2711 0.0283 0.1672 0.059*
C19 0.3406 (2) −0.0385 (3) 0.1706 (3) 0.0584 (14)
H19 0.3209 −0.0833 0.1623 0.070*
C20 0.3982 (3) −0.0392 (3) 0.1797 (3) 0.0651 (16)
H20 0.4181 −0.0844 0.1777 0.078*
C21 0.4273 (2) 0.0267 (4) 0.1920 (4) 0.0714 (17)
H21 0.4670 0.0264 0.1980 0.086*
C22 0.3977 (2) 0.0938 (3) 0.1953 (3) 0.0593 (14)
H22 0.4177 0.1382 0.2045 0.071*
C23 0.3481 (2) 0.2435 (3) 0.1316 (3) 0.0455 (12)
C24 0.3554 (2) 0.2283 (3) 0.0564 (3) 0.0606 (14)
H24 0.3343 0.1901 0.0328 0.073*
C25 0.3935 (3) 0.2691 (4) 0.0156 (4) 0.0784 (19)
H25 0.3973 0.2592 −0.0357 0.094*
C26 0.4252 (3) 0.3234 (4) 0.0498 (4) 0.082 (2)
H26 0.4515 0.3501 0.0222 0.099*
C27 0.4192 (2) 0.3396 (3) 0.1245 (4) 0.0757 (18)
H27 0.4411 0.3772 0.1478 0.091*
C28 0.3801 (2) 0.2995 (3) 0.1655 (3) 0.0556 (14)
H28 0.3755 0.3106 0.2164 0.067*
C29 0.11966 (19) 0.1722 (3) 0.3079 (3) 0.0464 (12)
C30 0.0944 (3) 0.1036 (3) 0.2908 (4) 0.0761 (18)
H30 0.1061 0.0757 0.2496 0.091*
C31 0.0515 (3) 0.0769 (4) 0.3358 (5) 0.101 (2)
H31 0.0338 0.0313 0.3240 0.122*
C32 0.0350 (3) 0.1166 (4) 0.3970 (4) 0.098 (2)
H32 0.0069 0.0974 0.4274 0.117*
C33 0.0592 (3) 0.1842 (4) 0.4141 (4) 0.084 (2)
H33 0.0473 0.2115 0.4555 0.101*
C34 0.1015 (2) 0.2122 (3) 0.3699 (3) 0.0597 (14)
H34 0.1180 0.2584 0.3817 0.072*
C35 0.13433 (19) 0.2891 (3) 0.2004 (3) 0.0423 (11)
C36 0.1637 (2) 0.3484 (3) 0.1707 (3) 0.0548 (13)
H36 0.2032 0.3509 0.1779 0.066*
C37 0.1351 (3) 0.4045 (3) 0.1302 (3) 0.0707 (17)
H37 0.1554 0.4440 0.1096 0.085*
C38 0.0765 (3) 0.4017 (3) 0.1204 (3) 0.0716 (17)
H38 0.0573 0.4398 0.0940 0.086*
C39 0.0469 (2) 0.3436 (3) 0.1492 (3) 0.0648 (16)
H39 0.0073 0.3419 0.1419 0.078*
C40 0.0750 (2) 0.2864 (3) 0.1895 (3) 0.0530 (13)
H40 0.0544 0.2467 0.2090 0.064*
C41 0.0678 (5) 0.0611 (8) 0.5868 (8) 0.200 (6)
H41A 0.0315 0.0859 0.5890 0.300*
H41B 0.0648 0.0202 0.5514 0.300*
H41C 0.0960 0.0961 0.5707 0.300*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0365 (3) 0.0446 (3) 0.0287 (3) 0.0026 (2) 0.0002 (2) 0.0009 (2)
N1 0.084 (4) 0.054 (3) 0.057 (3) −0.012 (3) 0.006 (2) −0.007 (2)
O1 0.204 (9) 0.280 (12) 0.241 (12) −0.122 (8) −0.036 (8) 0.110 (9)
P1 0.0297 (6) 0.0359 (6) 0.0260 (6) 0.0033 (5) 0.0006 (4) −0.0011 (5)
P2 0.0374 (7) 0.0460 (7) 0.0284 (6) 0.0033 (5) 0.0041 (5) −0.0016 (5)
P3 0.0319 (6) 0.0469 (7) 0.0346 (7) 0.0047 (5) −0.0016 (5) −0.0020 (5)
C1 0.045 (3) 0.057 (3) 0.029 (3) 0.005 (2) 0.003 (2) 0.003 (2)
C2 0.036 (2) 0.036 (2) 0.027 (2) 0.0024 (19) −0.0035 (18) −0.0043 (18)
C3 0.031 (2) 0.040 (2) 0.028 (2) 0.0052 (18) −0.0047 (18) −0.0014 (19)
C4 0.054 (3) 0.051 (3) 0.034 (3) 0.002 (2) 0.001 (2) 0.000 (2)
C5 0.074 (4) 0.052 (3) 0.056 (4) −0.009 (3) −0.010 (3) −0.014 (3)
C6 0.068 (4) 0.049 (3) 0.075 (4) −0.012 (3) −0.005 (3) 0.006 (3)
C7 0.073 (4) 0.053 (3) 0.053 (4) −0.007 (3) 0.009 (3) 0.012 (3)
C8 0.057 (3) 0.044 (3) 0.037 (3) −0.004 (2) 0.003 (2) −0.002 (2)
C9 0.031 (2) 0.045 (3) 0.032 (2) 0.006 (2) 0.0013 (19) −0.008 (2)
C10 0.041 (3) 0.078 (4) 0.053 (3) 0.000 (3) 0.001 (2) 0.009 (3)
C11 0.043 (3) 0.108 (5) 0.073 (4) −0.015 (3) 0.009 (3) 0.004 (4)
C12 0.036 (3) 0.098 (5) 0.067 (4) 0.012 (3) −0.005 (3) −0.013 (4)
C13 0.049 (3) 0.078 (4) 0.060 (4) 0.019 (3) −0.014 (3) −0.002 (3)
C14 0.040 (3) 0.058 (3) 0.052 (3) 0.007 (2) −0.004 (2) 0.002 (3)
C15 0.051 (3) 0.052 (3) 0.034 (3) 0.011 (2) −0.006 (2) −0.008 (2)
C16 0.040 (3) 0.049 (3) 0.042 (3) 0.007 (2) −0.002 (2) −0.007 (2)
C17 0.042 (3) 0.053 (3) 0.029 (3) 0.007 (2) 0.003 (2) −0.001 (2)
C18 0.045 (3) 0.057 (3) 0.046 (3) 0.009 (2) 0.006 (2) −0.001 (2)
C19 0.063 (4) 0.052 (3) 0.061 (4) 0.006 (3) 0.003 (3) −0.002 (3)
C20 0.066 (4) 0.062 (4) 0.068 (4) 0.022 (3) 0.005 (3) 0.007 (3)
C21 0.048 (3) 0.087 (5) 0.079 (5) 0.020 (3) −0.001 (3) 0.008 (4)
C22 0.049 (3) 0.062 (4) 0.066 (4) 0.005 (3) −0.002 (3) 0.003 (3)
C23 0.048 (3) 0.051 (3) 0.039 (3) 0.013 (2) 0.012 (2) 0.006 (2)
C24 0.068 (4) 0.070 (4) 0.045 (3) 0.009 (3) 0.014 (3) 0.007 (3)
C25 0.083 (5) 0.097 (5) 0.058 (4) 0.020 (4) 0.032 (3) 0.018 (4)
C26 0.075 (5) 0.084 (5) 0.091 (5) 0.007 (4) 0.043 (4) 0.032 (4)
C27 0.065 (4) 0.069 (4) 0.095 (5) −0.005 (3) 0.025 (4) 0.010 (4)
C28 0.056 (3) 0.061 (3) 0.051 (3) −0.001 (3) 0.017 (3) 0.005 (3)
C29 0.038 (3) 0.052 (3) 0.049 (3) 0.006 (2) 0.000 (2) 0.001 (2)
C30 0.070 (4) 0.074 (4) 0.086 (5) −0.009 (3) 0.030 (4) −0.008 (4)
C31 0.105 (6) 0.086 (5) 0.117 (7) −0.027 (4) 0.046 (5) −0.007 (5)
C32 0.094 (5) 0.106 (6) 0.097 (6) −0.017 (5) 0.049 (4) 0.000 (5)
C33 0.076 (4) 0.107 (6) 0.072 (5) −0.001 (4) 0.027 (4) −0.006 (4)
C34 0.054 (3) 0.075 (4) 0.051 (3) −0.004 (3) 0.007 (3) −0.005 (3)
C35 0.042 (3) 0.047 (3) 0.037 (3) 0.007 (2) −0.006 (2) −0.007 (2)
C36 0.050 (3) 0.060 (3) 0.053 (3) 0.002 (3) −0.011 (3) 0.003 (3)
C37 0.075 (4) 0.064 (4) 0.071 (4) −0.004 (3) −0.020 (3) 0.015 (3)
C38 0.075 (4) 0.069 (4) 0.069 (4) 0.019 (3) −0.026 (3) 0.009 (3)
C39 0.048 (3) 0.077 (4) 0.068 (4) 0.018 (3) −0.015 (3) 0.003 (3)
C40 0.044 (3) 0.062 (3) 0.052 (3) 0.006 (3) −0.007 (2) −0.001 (3)
C41 0.166 (12) 0.229 (14) 0.204 (16) −0.004 (10) −0.006 (10) 0.052 (12)

Geometric parameters (Å, °)

Cu1—C1 1.951 (6) C17—C22 1.387 (6)
Cu1—P1 2.2832 (12) C18—C19 1.388 (6)
Cu1—P3 2.3041 (13) C18—H18 0.9300
Cu1—P2 2.3291 (12) C19—C20 1.355 (7)
N1—C1 1.146 (6) C19—H19 0.9300
O1—C41 1.358 (12) C20—C21 1.370 (8)
O1—H1 0.8200 C20—H20 0.9300
P1—C3 1.818 (4) C21—C22 1.383 (7)
P1—C9 1.832 (4) C21—H21 0.9300
P1—C2 1.840 (4) C22—H22 0.9300
P2—C17 1.832 (5) C23—C28 1.370 (7)
P2—C23 1.833 (5) C23—C24 1.372 (7)
P2—C15 1.846 (5) C24—C25 1.375 (8)
P3—C29 1.818 (5) C24—H24 0.9300
P3—C16 1.835 (5) C25—C26 1.348 (9)
P3—C35 1.835 (5) C25—H25 0.9300
C2—C2i 1.532 (8) C26—C27 1.363 (9)
C2—H2A 0.9700 C26—H26 0.9300
C2—H2B 0.9700 C27—C28 1.387 (7)
C3—C8 1.382 (6) C27—H27 0.9300
C3—C4 1.386 (6) C28—H28 0.9300
C4—C5 1.384 (7) C29—C30 1.384 (7)
C4—H4 0.9300 C29—C34 1.386 (7)
C5—C6 1.371 (7) C30—C31 1.391 (8)
C5—H5 0.9300 C30—H30 0.9300
C6—C7 1.378 (7) C31—C32 1.360 (9)
C6—H6 0.9300 C31—H31 0.9300
C7—C8 1.375 (7) C32—C33 1.358 (9)
C7—H7 0.9300 C32—H32 0.9300
C8—H8 0.9300 C33—C34 1.377 (8)
C9—C10 1.372 (6) C33—H33 0.9300
C9—C14 1.381 (6) C34—H34 0.9300
C10—C11 1.394 (7) C35—C36 1.374 (7)
C10—H10 0.9300 C35—C40 1.396 (6)
C11—C12 1.352 (8) C36—C37 1.387 (7)
C11—H11 0.9300 C36—H36 0.9300
C12—C13 1.368 (8) C37—C38 1.376 (8)
C12—H12 0.9300 C37—H37 0.9300
C13—C14 1.387 (6) C38—C39 1.355 (8)
C13—H13 0.9300 C38—H38 0.9300
C14—H14 0.9300 C39—C40 1.393 (7)
C15—C16 1.529 (6) C39—H39 0.9300
C15—H15A 0.9700 C40—H40 0.9300
C15—H15B 0.9700 C41—H41A 0.9600
C16—H16A 0.9700 C41—H41B 0.9600
C16—H16B 0.9700 C41—H41C 0.9600
C17—C18 1.381 (6)
C1—Cu1—P1 107.59 (14) H16A—C16—H16B 108.2
C1—Cu1—P3 119.11 (14) C18—C17—C22 117.1 (4)
P1—Cu1—P3 113.60 (5) C18—C17—P2 123.1 (4)
C1—Cu1—P2 111.79 (14) C22—C17—P2 119.7 (4)
P1—Cu1—P2 115.07 (5) C17—C18—C19 121.2 (5)
P3—Cu1—P2 89.03 (4) C17—C18—H18 119.4
C41—O1—H1 109.5 C19—C18—H18 119.4
C3—P1—C9 103.88 (19) C20—C19—C18 120.4 (5)
C3—P1—C2 104.93 (19) C20—C19—H19 119.8
C9—P1—C2 99.06 (18) C18—C19—H19 119.8
C3—P1—Cu1 117.12 (14) C19—C20—C21 119.9 (5)
C9—P1—Cu1 114.28 (15) C19—C20—H20 120.1
C2—P1—Cu1 115.39 (14) C21—C20—H20 120.1
C17—P2—C23 99.5 (2) C20—C21—C22 119.9 (5)
C17—P2—C15 103.7 (2) C20—C21—H21 120.1
C23—P2—C15 104.3 (2) C22—C21—H21 120.1
C17—P2—Cu1 125.84 (15) C21—C22—C17 121.5 (5)
C23—P2—Cu1 118.46 (16) C21—C22—H22 119.3
C15—P2—Cu1 102.56 (15) C17—C22—H22 119.3
C29—P3—C16 105.0 (2) C28—C23—C24 118.8 (5)
C29—P3—C35 102.3 (2) C28—C23—P2 118.9 (4)
C16—P3—C35 101.2 (2) C24—C23—P2 122.2 (4)
C29—P3—Cu1 123.19 (17) C23—C24—C25 120.7 (6)
C16—P3—Cu1 103.70 (15) C23—C24—H24 119.7
C35—P3—Cu1 118.66 (16) C25—C24—H24 119.7
N1—C1—Cu1 176.6 (5) C26—C25—C24 120.1 (6)
C2i—C2—P1 113.6 (4) C26—C25—H25 120.0
C2i—C2—H2A 108.8 C24—C25—H25 120.0
P1—C2—H2A 108.8 C25—C26—C27 120.6 (6)
C2i—C2—H2B 108.8 C25—C26—H26 119.7
P1—C2—H2B 108.8 C27—C26—H26 119.7
H2A—C2—H2B 107.7 C26—C27—C28 119.5 (6)
C8—C3—C4 117.7 (4) C26—C27—H27 120.2
C8—C3—P1 124.8 (3) C28—C27—H27 120.2
C4—C3—P1 117.5 (3) C23—C28—C27 120.4 (6)
C5—C4—C3 121.2 (5) C23—C28—H28 119.8
C5—C4—H4 119.4 C27—C28—H28 119.8
C3—C4—H4 119.4 C30—C29—C34 118.9 (5)
C6—C5—C4 119.9 (5) C30—C29—P3 123.5 (4)
C6—C5—H5 120.1 C34—C29—P3 117.6 (4)
C4—C5—H5 120.1 C29—C30—C31 119.3 (6)
C5—C6—C7 119.8 (5) C29—C30—H30 120.3
C5—C6—H6 120.1 C31—C30—H30 120.3
C7—C6—H6 120.1 C32—C31—C30 120.7 (7)
C8—C7—C6 119.9 (5) C32—C31—H31 119.7
C8—C7—H7 120.1 C30—C31—H31 119.7
C6—C7—H7 120.1 C33—C32—C31 120.5 (6)
C7—C8—C3 121.5 (5) C33—C32—H32 119.7
C7—C8—H8 119.2 C31—C32—H32 119.7
C3—C8—H8 119.2 C32—C33—C34 119.8 (6)
C10—C9—C14 118.2 (4) C32—C33—H33 120.1
C10—C9—P1 118.9 (4) C34—C33—H33 120.1
C14—C9—P1 122.8 (3) C33—C34—C29 120.8 (6)
C9—C10—C11 120.6 (5) C33—C34—H34 119.6
C9—C10—H10 119.7 C29—C34—H34 119.6
C11—C10—H10 119.7 C36—C35—C40 118.9 (4)
C12—C11—C10 120.4 (5) C36—C35—P3 119.1 (4)
C12—C11—H11 119.8 C40—C35—P3 122.0 (4)
C10—C11—H11 119.8 C35—C36—C37 120.6 (5)
C11—C12—C13 120.1 (5) C35—C36—H36 119.7
C11—C12—H12 120.0 C37—C36—H36 119.7
C13—C12—H12 120.0 C38—C37—C36 119.9 (6)
C12—C13—C14 119.7 (5) C38—C37—H37 120.0
C12—C13—H13 120.1 C36—C37—H37 120.0
C14—C13—H13 120.1 C39—C38—C37 120.3 (5)
C9—C14—C13 121.0 (5) C39—C38—H38 119.9
C9—C14—H14 119.5 C37—C38—H38 119.9
C13—C14—H14 119.5 C38—C39—C40 120.6 (5)
C16—C15—P2 112.0 (3) C38—C39—H39 119.7
C16—C15—H15A 109.2 C40—C39—H39 119.7
P2—C15—H15A 109.2 C39—C40—C35 119.7 (5)
C16—C15—H15B 109.2 C39—C40—H40 120.2
P2—C15—H15B 109.2 C35—C40—H40 120.2
H15A—C15—H15B 107.9 O1—C41—H41A 109.5
C15—C16—P3 109.8 (3) O1—C41—H41B 109.5
C15—C16—H16A 109.7 H41A—C41—H41B 109.5
P3—C16—H16A 109.7 O1—C41—H41C 109.5
C15—C16—H16B 109.7 H41A—C41—H41C 109.5
P3—C16—H16B 109.7 H41B—C41—H41C 109.5
C1—Cu1—P1—C3 160.9 (2) P2—C15—C16—P3 54.5 (4)
P3—Cu1—P1—C3 26.84 (16) C29—P3—C16—C15 −172.6 (3)
P2—Cu1—P1—C3 −73.77 (16) C35—P3—C16—C15 81.3 (3)
C1—Cu1—P1—C9 −77.3 (2) Cu1—P3—C16—C15 −42.1 (3)
P3—Cu1—P1—C9 148.63 (15) C23—P2—C17—C18 −135.9 (4)
P2—Cu1—P1—C9 48.02 (16) C15—P2—C17—C18 −28.6 (4)
C1—Cu1—P1—C2 36.6 (2) Cu1—P2—C17—C18 88.2 (4)
P3—Cu1—P1—C2 −97.46 (15) C23—P2—C17—C22 45.0 (4)
P2—Cu1—P1—C2 161.93 (15) C15—P2—C17—C22 152.3 (4)
C1—Cu1—P2—C17 130.6 (2) Cu1—P2—C17—C22 −90.8 (4)
P1—Cu1—P2—C17 7.5 (2) C22—C17—C18—C19 −0.9 (7)
P3—Cu1—P2—C17 −108.3 (2) P2—C17—C18—C19 −179.9 (4)
C1—Cu1—P2—C23 2.0 (2) C17—C18—C19—C20 0.2 (8)
P1—Cu1—P2—C23 −121.14 (18) C18—C19—C20—C21 0.1 (9)
P3—Cu1—P2—C23 123.13 (18) C19—C20—C21—C22 0.3 (9)
C1—Cu1—P2—C15 −112.1 (2) C20—C21—C22—C17 −1.1 (9)
P1—Cu1—P2—C15 124.81 (16) C18—C17—C22—C21 1.3 (8)
P3—Cu1—P2—C15 9.07 (16) P2—C17—C22—C21 −179.6 (4)
C1—Cu1—P3—C29 −112.1 (2) C17—P2—C23—C28 −112.0 (4)
P1—Cu1—P3—C29 16.2 (2) C15—P2—C23—C28 141.1 (4)
P2—Cu1—P3—C29 133.3 (2) Cu1—P2—C23—C28 28.0 (4)
C1—Cu1—P3—C16 129.4 (2) C17—P2—C23—C24 63.0 (4)
P1—Cu1—P3—C16 −102.25 (17) C15—P2—C23—C24 −43.9 (5)
P2—Cu1—P3—C16 14.82 (17) Cu1—P2—C23—C24 −157.0 (4)
C1—Cu1—P3—C35 18.2 (2) C28—C23—C24—C25 −0.8 (8)
P1—Cu1—P3—C35 146.56 (17) P2—C23—C24—C25 −175.8 (4)
P2—Cu1—P3—C35 −96.37 (17) C23—C24—C25—C26 1.7 (9)
C3—P1—C2—C2i −72.9 (4) C24—C25—C26—C27 −1.4 (10)
C9—P1—C2—C2i −180.0 (4) C25—C26—C27—C28 0.3 (10)
Cu1—P1—C2—C2i 57.6 (4) C24—C23—C28—C27 −0.3 (8)
C9—P1—C3—C8 92.8 (4) P2—C23—C28—C27 174.8 (4)
C2—P1—C3—C8 −10.7 (4) C26—C27—C28—C23 0.6 (9)
Cu1—P1—C3—C8 −140.2 (3) C16—P3—C29—C30 −0.7 (5)
C9—P1—C3—C4 −87.4 (4) C35—P3—C29—C30 104.6 (5)
C2—P1—C3—C4 169.1 (3) Cu1—P3—C29—C30 −118.6 (5)
Cu1—P1—C3—C4 39.7 (4) C16—P3—C29—C34 −178.7 (4)
C8—C3—C4—C5 −0.2 (7) C35—P3—C29—C34 −73.4 (4)
P1—C3—C4—C5 179.9 (4) Cu1—P3—C29—C34 63.4 (4)
C3—C4—C5—C6 −0.1 (8) C34—C29—C30—C31 0.3 (9)
C4—C5—C6—C7 0.9 (8) P3—C29—C30—C31 −177.6 (5)
C5—C6—C7—C8 −1.3 (8) C29—C30—C31—C32 −1.3 (12)
C6—C7—C8—C3 1.0 (8) C30—C31—C32—C33 1.7 (13)
C4—C3—C8—C7 −0.2 (7) C31—C32—C33—C34 −1.0 (12)
P1—C3—C8—C7 179.6 (4) C32—C33—C34—C29 0.0 (10)
C3—P1—C9—C10 151.4 (4) C30—C29—C34—C33 0.3 (9)
C2—P1—C9—C10 −100.6 (4) P3—C29—C34—C33 178.4 (5)
Cu1—P1—C9—C10 22.6 (4) C29—P3—C35—C36 159.4 (4)
C3—P1—C9—C14 −33.0 (4) C16—P3—C35—C36 −92.4 (4)
C2—P1—C9—C14 74.9 (4) Cu1—P3—C35—C36 20.2 (4)
Cu1—P1—C9—C14 −161.8 (3) C29—P3—C35—C40 −22.0 (4)
C14—C9—C10—C11 0.0 (8) C16—P3—C35—C40 86.2 (4)
P1—C9—C10—C11 175.7 (4) Cu1—P3—C35—C40 −161.3 (3)
C9—C10—C11—C12 0.6 (9) C40—C35—C36—C37 −0.3 (8)
C10—C11—C12—C13 −1.1 (9) P3—C35—C36—C37 178.3 (4)
C11—C12—C13—C14 1.0 (9) C35—C36—C37—C38 1.0 (9)
C10—C9—C14—C13 −0.1 (7) C36—C37—C38—C39 −1.1 (9)
P1—C9—C14—C13 −175.7 (4) C37—C38—C39—C40 0.6 (9)
C12—C13—C14—C9 −0.4 (8) C38—C39—C40—C35 0.1 (8)
C17—P2—C15—C16 93.9 (3) C36—C35—C40—C39 −0.2 (7)
C23—P2—C15—C16 −162.3 (3) P3—C35—C40—C39 −178.8 (4)
Cu1—P2—C15—C16 −38.3 (3)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.82 2.02 2.829 (11) 171

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2196).

References

  1. Bruker (2007). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cingolani, A., Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 748–762.
  3. Di Nicola, C., Koutsantonis, G. A., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 2159–2169.
  4. Effendy, Di Nicola, C., Pettinari, C., Pizzabiocca, A., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 64–80.
  5. Jin, Q. H., Chen, L. M., Li, P. Z., Deng, S. F. & Wang, R. (2009). Inorg. Chim. Acta, 362, 5224–5230.
  6. Saravanabharathi, D., Monika, Venugopalan, P. & Samuelson, A.G. (2002). Polyhedron, 21, 2433–2443.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sivasankar, C., Nethaji, M. & Samuelson, A. G. (2004). Inorg. Chim. Commun.7, 238–240.
  10. Song, L., Lin, P., Li, Z. H., Li, J. R., Du, S. W. & Wu, X. T. (2007). Polyhedron, 26, 1199–1204.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810029545/su2196sup1.cif

e-66-m1032-sup1.cif (30.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029545/su2196Isup2.hkl

e-66-m1032-Isup2.hkl (317.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES