Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 10;66(Pt 8):o1973–o1974. doi: 10.1107/S1600536810026346

(E)-1-(4-Amino­phen­yl)-3-(2,4,5-trimeth­oxy­phen­yl)prop-2-en-1-one

Hoong-Kun Fun a,*,, Thawanrat Kobkeatthawin b, Pumsak Ruanwas b, Suchada Chantrapromma b,§
PMCID: PMC3007376  PMID: 21588292

Abstract

Mol­ecules of the title amino­chalcone, C18H19NO4, are twisted, with a dihedral angle of 11.26 (6)° between the 4-amino­phenyl and 2,4,5-trimeth­oxy­phenyl rings. The conformations of the three meth­oxy groups with respect to the benzene ring are slightly different. Two meth­oxy groups are almost coplanar with the attached benzene ring [C—O—C—C torsion angles of −1.45 (19) and 1.5 (2)°], while the third is (−)-synclinal with the attached benzene ring [C—O—C—C = −81.36 (17)°]. In the crystal structure, mol­ecules are stacked into columns along the b axis and mol­ecules in adjacent columns are linked by N—H⋯O hydrogen bonds into V-shaped double columns. Weak π–π inter­actions are also observed, with a centroid-centroid distance of 3.7532 (8) Å.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogen bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009, 2010); Suwunwong et al. (2009). For background to and applications of chalcones, see: Batovska et al. (2007); Jung et al. (2008); Kim et al. (2010); Nielsen et al. (2004); Niu et al. (2006); Romagnoli et al. (2008); Tewtrakul et al. (2003); Won et al. (2005); Xia et al. (2000).graphic file with name e-66-o1973-scheme1.jpg

Experimental

Crystal data

  • C18H19NO4

  • M r = 313.34

  • Monoclinic, Inline graphic

  • a = 13.6117 (2) Å

  • b = 10.3540 (2) Å

  • c = 22.3920 (4) Å

  • β = 100.879 (1)°

  • V = 3099.11 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.38 × 0.32 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.965, T max = 0.991

  • 19818 measured reflections

  • 4506 independent reflections

  • 3581 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.131

  • S = 1.05

  • 4506 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026346/fj2326sup1.cif

e-66-o1973-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026346/fj2326Isup2.hkl

e-66-o1973-Isup2.hkl (220.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.86 (2) 2.12 (2) 2.9692 (16) 170.4 (17)
N1—H2N1⋯O1ii 0.88 (2) 2.21 (2) 3.0176 (17) 153.4 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Thailand Research Fund (TRF) for the research grant (RSA5280033), Prince of Songkla University and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. TK and PR thank the Graduate School, Prince of Songkla University, for partial financial support.

supplementary crystallographic information

Comment

Chalcones are important compounds which have considerable interesting applications involving biological activities such as antibacterial (Nielsen et al., 2004), antifungal (Batovska et al., 2007), anti-inflammatory (Won et al., 2005), anti-HIV-1 protease inhibition (Tewtrakul et al., 2003) and antitumor (Romagnoli et al., 2008) properties. Moreover they also show electroactive fluorescent properties (Jung et al., 2008; Niu et al., 2006). From previous reports, aminochalcone showed good cytotoxicity in vitro against human tumor cell lines (Xia et al., 2000) and was a new class of both activator and inhibitor of the TREK2 channel which turn out to be an important channel in charge of tuning neuronal transmitter and hormone levels (Kim et al., 2010). In continuing our on-going research on bioactivity and fluorescence properties of chalcones (Chantrapromma et al., 2009; 2010; Suwunwong et al., 2009), the title aminochalcone (I) was synthesized. (I) doesn't possess antibacterial and cytotoxic activities. However (I) exhibits fluorescence with the maximum emission at 480 nm when the compound is excited at 320 nm in chloroform solution.

The molecule of the title aminochalcone, (Fig. 1), exists in an E configuration with respect to the C8═C9 double bond [1.3407 (19) Å] with torsion angle C7–C8–C9–C10 = 177.99 (13)°. The whole molecule is not planar indicated by the dihedral angle between 4-aminophenyl and 2,4,5-trimethoxyphenyl rings being 11.26 (6)°. The propenone unit (C7—C9/O1) is planar with the r.m.s. deviation 0.0031 (1) Å. The mean plane through the propenone unit makes dihedral angles of 11.70 (9) and 9.19 (9)° respectively with the planes of 4-aminophenyl and 2,4,5-trimethoxyphenyl rings. The three methoxy groups of 2,4,5-trimethoxyphenyl unit have two different orientations: two methoxy groups (at atom C11 and C13 positions) are co-planar with the attached benzene ring with torsion angles C16–O2–C11–C12 = -1.45 (19)° and C17–O3–C13–C12 = 1.5 (2)° whereas the one at atom C14 position is (-)-syn-clinally attached with the torsion angle C18–O4–C14–C13 = -81.36 (17)°. Weak C9—H9A···O1 and C9—H9A···O2 intramolecular interactions generate two S(5) motifs (Bernstein et al., 1995) (Fig. 1 and Table 1). The bond distances and angles are of normal values (Allen et al., 1987) and are comparable with the related structures (Chantrapromma et al., 2009; 2010; Suwunwong et al., 2009).

In the crystal packing (Fig. 2), the molecules are stacked into columns along the b axis. The molecules in the adjacent columns are linked by N—H···O hydrogen bonds (Table 1) into a V-shape double columns. π–π interaction was observed with the Cg1···Cg2 distance of 3.7532 (8) Å (symmetry code -1/2 - x, 3/2 - y, 1 - z); Cg1 and Cg2 are the centroids of C1–C6 and C10–C15 rings, respectively.

Experimental

The title compound was synthesized by the condensation of 2,4,5-trimethoxybenzaldehyde (0.40 g, 2 mmol) with 4-aminoacetophenone (0.28 g, 2 mmol) in ethanol (30 ml) in the presence of 30% NaOH(aq) (5 ml). After stirring for 3 h at room temperature, the resulting orange solid appeared and was then collected by filtration, washed with distilled water, dried and purified by repeated recrystallization from acetone. Orange block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from acetone by the slow evaporation of the solvent at room temperature after several days, Mp. 393–394 K.

Refinement

Amino H atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.74 Å from H18C and the deepest hole is located at 1.39 Å from C15.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed lines represent the intramolecular C—H···O interactions.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C18H19NO4 F(000) = 1328
Mr = 313.34 Dx = 1.343 Mg m3
Monoclinic, C2/c Melting point = 393–394 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 13.6117 (2) Å Cell parameters from 4506 reflections
b = 10.3540 (2) Å θ = 1.9–30.0°
c = 22.3920 (4) Å µ = 0.10 mm1
β = 100.879 (1)° T = 100 K
V = 3099.11 (9) Å3 Block, orange
Z = 8 0.38 × 0.32 × 0.10 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 4506 independent reflections
Radiation source: sealed tube 3581 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −19→19
Tmin = 0.965, Tmax = 0.991 k = −14→12
19818 measured reflections l = −31→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0552P)2 + 3.4363P] where P = (Fo2 + 2Fc2)/3
4506 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.38020 (7) 0.71239 (11) 0.65434 (5) 0.0236 (2)
O2 0.40102 (7) 0.40284 (10) 0.49618 (5) 0.0226 (2)
O3 0.10593 (7) 0.26403 (10) 0.35317 (5) 0.0237 (2)
O4 −0.00667 (7) 0.42294 (10) 0.40878 (5) 0.0230 (2)
N1 0.09228 (9) 1.16277 (13) 0.71073 (6) 0.0226 (3)
H1N1 0.0289 (15) 1.1700 (18) 0.6971 (8) 0.028 (5)*
H2N1 0.1136 (15) 1.197 (2) 0.7468 (9) 0.036 (5)*
C1 0.23640 (9) 0.84035 (13) 0.65403 (6) 0.0165 (3)
C2 0.28745 (9) 0.92608 (13) 0.69789 (6) 0.0169 (3)
H2A 0.3552 0.9129 0.7131 0.020*
C3 0.23973 (10) 1.02891 (13) 0.71892 (6) 0.0174 (3)
H3A 0.2749 1.0829 0.7486 0.021*
C4 0.13779 (10) 1.05267 (13) 0.69558 (6) 0.0171 (3)
C5 0.08494 (9) 0.96364 (14) 0.65447 (6) 0.0183 (3)
H5A 0.0166 0.9746 0.6407 0.022*
C6 0.13318 (10) 0.86001 (14) 0.63425 (6) 0.0182 (3)
H6A 0.0968 0.8020 0.6070 0.022*
C7 0.29247 (10) 0.73650 (13) 0.63014 (6) 0.0177 (3)
C8 0.24234 (10) 0.66396 (14) 0.57644 (6) 0.0201 (3)
H8A 0.1762 0.6835 0.5598 0.024*
C9 0.28853 (9) 0.57075 (13) 0.55064 (6) 0.0177 (3)
H9A 0.3553 0.5549 0.5673 0.021*
C10 0.24334 (9) 0.49221 (13) 0.49882 (6) 0.0163 (3)
C11 0.30112 (9) 0.40495 (13) 0.47178 (6) 0.0174 (3)
C12 0.25784 (10) 0.32686 (13) 0.42310 (6) 0.0185 (3)
H12A 0.2973 0.2697 0.4059 0.022*
C13 0.15546 (10) 0.33465 (13) 0.40038 (6) 0.0181 (3)
C14 0.09645 (9) 0.42119 (13) 0.42698 (6) 0.0181 (3)
C15 0.14011 (10) 0.49721 (13) 0.47490 (6) 0.0177 (3)
H15A 0.1002 0.5538 0.4921 0.021*
C16 0.46300 (10) 0.31421 (15) 0.47127 (7) 0.0227 (3)
H16A 0.5310 0.3231 0.4922 0.034*
H16B 0.4590 0.3324 0.4288 0.034*
H16C 0.4406 0.2276 0.4760 0.034*
C17 0.16178 (11) 0.17238 (15) 0.32512 (7) 0.0249 (3)
H17A 0.1189 0.1338 0.2908 0.037*
H17B 0.1877 0.1065 0.3540 0.037*
H17C 0.2162 0.2155 0.3118 0.037*
C18 −0.04143 (12) 0.49413 (19) 0.35457 (8) 0.0338 (4)
H18A −0.1129 0.5017 0.3482 0.051*
H18B −0.0228 0.4500 0.3207 0.051*
H18C −0.0120 0.5787 0.3582 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0160 (5) 0.0295 (6) 0.0228 (5) 0.0039 (4) −0.0025 (4) −0.0032 (4)
O2 0.0130 (4) 0.0288 (6) 0.0253 (5) 0.0038 (4) 0.0019 (4) −0.0025 (4)
O3 0.0197 (5) 0.0270 (5) 0.0244 (5) −0.0026 (4) 0.0043 (4) −0.0092 (4)
O4 0.0132 (4) 0.0286 (6) 0.0263 (5) −0.0023 (4) 0.0012 (4) −0.0023 (4)
N1 0.0168 (6) 0.0277 (7) 0.0220 (6) 0.0043 (5) 0.0001 (4) −0.0045 (5)
C1 0.0151 (6) 0.0176 (6) 0.0160 (6) −0.0007 (5) 0.0009 (4) 0.0023 (5)
C2 0.0126 (5) 0.0202 (6) 0.0164 (6) −0.0009 (5) −0.0009 (4) 0.0036 (5)
C3 0.0157 (6) 0.0201 (6) 0.0151 (6) −0.0029 (5) −0.0004 (4) 0.0012 (5)
C4 0.0162 (6) 0.0200 (6) 0.0152 (6) −0.0005 (5) 0.0035 (4) 0.0034 (5)
C5 0.0116 (5) 0.0230 (7) 0.0195 (6) −0.0014 (5) 0.0003 (4) 0.0023 (5)
C6 0.0151 (6) 0.0206 (6) 0.0176 (6) −0.0038 (5) −0.0002 (4) 0.0006 (5)
C7 0.0160 (6) 0.0194 (6) 0.0170 (6) −0.0002 (5) 0.0012 (5) 0.0022 (5)
C8 0.0151 (6) 0.0225 (7) 0.0203 (6) 0.0011 (5) −0.0024 (5) −0.0015 (5)
C9 0.0137 (5) 0.0220 (7) 0.0170 (6) −0.0018 (5) 0.0019 (4) 0.0029 (5)
C10 0.0145 (6) 0.0184 (6) 0.0161 (6) −0.0008 (5) 0.0034 (4) 0.0018 (5)
C11 0.0135 (5) 0.0202 (6) 0.0186 (6) −0.0002 (5) 0.0034 (5) 0.0035 (5)
C12 0.0178 (6) 0.0186 (6) 0.0209 (6) 0.0013 (5) 0.0080 (5) 0.0005 (5)
C13 0.0190 (6) 0.0186 (6) 0.0174 (6) −0.0038 (5) 0.0052 (5) −0.0006 (5)
C14 0.0129 (6) 0.0208 (7) 0.0206 (6) −0.0023 (5) 0.0033 (5) 0.0008 (5)
C15 0.0148 (6) 0.0187 (6) 0.0200 (6) 0.0003 (5) 0.0045 (5) −0.0005 (5)
C16 0.0166 (6) 0.0260 (7) 0.0265 (7) 0.0058 (5) 0.0071 (5) 0.0040 (6)
C17 0.0281 (7) 0.0221 (7) 0.0260 (7) −0.0023 (6) 0.0091 (6) −0.0064 (6)
C18 0.0208 (7) 0.0432 (10) 0.0345 (9) 0.0005 (7) −0.0023 (6) 0.0071 (7)

Geometric parameters (Å, °)

O1—C7 1.2400 (16) C8—C9 1.3407 (19)
O2—C11 1.3666 (15) C8—H8A 0.9300
O2—C16 1.4293 (17) C9—C10 1.4549 (18)
O3—C13 1.3557 (16) C9—H9A 0.9300
O3—C17 1.4329 (17) C10—C15 1.4071 (18)
O4—C14 1.3859 (15) C10—C11 1.4076 (18)
O4—C18 1.4228 (19) C11—C12 1.3953 (19)
N1—C4 1.3704 (18) C12—C13 1.3927 (18)
N1—H1N1 0.862 (19) C12—H12A 0.9300
N1—H2N1 0.88 (2) C13—C14 1.4083 (19)
C1—C6 1.4060 (18) C14—C15 1.3724 (19)
C1—C2 1.4064 (18) C15—H15A 0.9300
C1—C7 1.4760 (19) C16—H16A 0.9600
C2—C3 1.3758 (19) C16—H16B 0.9600
C2—H2A 0.9300 C16—H16C 0.9600
C3—C4 1.4089 (18) C17—H17A 0.9600
C3—H3A 0.9300 C17—H17B 0.9600
C4—C5 1.4016 (19) C17—H17C 0.9600
C5—C6 1.378 (2) C18—H18A 0.9600
C5—H5A 0.9300 C18—H18B 0.9600
C6—H6A 0.9300 C18—H18C 0.9600
C7—C8 1.4718 (19)
C11—O2—C16 118.06 (11) C11—C10—C9 121.02 (12)
C13—O3—C17 118.17 (11) O2—C11—C12 123.00 (12)
C14—O4—C18 114.38 (11) O2—C11—C10 115.65 (12)
C4—N1—H1N1 117.0 (13) C12—C11—C10 121.35 (12)
C4—N1—H2N1 118.4 (13) C13—C12—C11 119.84 (12)
H1N1—N1—H2N1 115.1 (18) C13—C12—H12A 120.1
C6—C1—C2 117.47 (12) C11—C12—H12A 120.1
C6—C1—C7 123.07 (12) O3—C13—C12 124.72 (12)
C2—C1—C7 119.46 (11) O3—C13—C14 115.69 (12)
C3—C2—C1 121.63 (12) C12—C13—C14 119.59 (12)
C3—C2—H2A 119.2 C15—C14—O4 119.17 (12)
C1—C2—H2A 119.2 C15—C14—C13 119.88 (12)
C2—C3—C4 120.24 (12) O4—C14—C13 120.72 (12)
C2—C3—H3A 119.9 C14—C15—C10 122.04 (12)
C4—C3—H3A 119.9 C14—C15—H15A 119.0
N1—C4—C5 120.65 (12) C10—C15—H15A 119.0
N1—C4—C3 120.86 (12) O2—C16—H16A 109.5
C5—C4—C3 118.44 (12) O2—C16—H16B 109.5
C6—C5—C4 120.69 (12) H16A—C16—H16B 109.5
C6—C5—H5A 119.7 O2—C16—H16C 109.5
C4—C5—H5A 119.7 H16A—C16—H16C 109.5
C5—C6—C1 121.26 (12) H16B—C16—H16C 109.5
C5—C6—H6A 119.4 O3—C17—H17A 109.5
C1—C6—H6A 119.4 O3—C17—H17B 109.5
O1—C7—C8 120.93 (12) H17A—C17—H17B 109.5
O1—C7—C1 120.63 (12) O3—C17—H17C 109.5
C8—C7—C1 118.43 (11) H17A—C17—H17C 109.5
C9—C8—C7 122.45 (12) H17B—C17—H17C 109.5
C9—C8—H8A 118.8 O4—C18—H18A 109.5
C7—C8—H8A 118.8 O4—C18—H18B 109.5
C8—C9—C10 125.73 (12) H18A—C18—H18B 109.5
C8—C9—H9A 117.1 O4—C18—H18C 109.5
C10—C9—H9A 117.1 H18A—C18—H18C 109.5
C15—C10—C11 117.31 (12) H18B—C18—H18C 109.5
C15—C10—C9 121.64 (12)
C6—C1—C2—C3 −2.81 (19) C15—C10—C11—O2 179.96 (11)
C7—C1—C2—C3 176.14 (12) C9—C10—C11—O2 −1.95 (18)
C1—C2—C3—C4 −1.5 (2) C15—C10—C11—C12 0.21 (19)
C2—C3—C4—N1 −172.31 (13) C9—C10—C11—C12 178.30 (12)
C2—C3—C4—C5 5.09 (19) O2—C11—C12—C13 −179.69 (12)
N1—C4—C5—C6 173.09 (13) C10—C11—C12—C13 0.0 (2)
C3—C4—C5—C6 −4.31 (19) C17—O3—C13—C12 1.5 (2)
C4—C5—C6—C1 −0.1 (2) C17—O3—C13—C14 −178.72 (12)
C2—C1—C6—C5 3.6 (2) C11—C12—C13—O3 179.60 (13)
C7—C1—C6—C5 −175.30 (13) C11—C12—C13—C14 −0.2 (2)
C6—C1—C7—O1 −170.62 (13) C18—O4—C14—C15 104.12 (16)
C2—C1—C7—O1 10.5 (2) C18—O4—C14—C13 −81.36 (17)
C6—C1—C7—C8 10.37 (19) O3—C13—C14—C15 −179.72 (12)
C2—C1—C7—C8 −168.52 (12) C12—C13—C14—C15 0.1 (2)
O1—C7—C8—C9 −1.0 (2) O3—C13—C14—O4 5.79 (19)
C1—C7—C8—C9 177.98 (13) C12—C13—C14—O4 −174.38 (12)
C7—C8—C9—C10 177.99 (13) O4—C14—C15—C10 174.73 (12)
C8—C9—C10—C15 −7.9 (2) C13—C14—C15—C10 0.2 (2)
C8—C9—C10—C11 174.10 (14) C11—C10—C15—C14 −0.3 (2)
C16—O2—C11—C12 −1.45 (19) C9—C10—C15—C14 −178.39 (13)
C16—O2—C11—C10 178.80 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1i 0.86 (2) 2.12 (2) 2.9692 (16) 170.4 (17)
N1—H2N1···O1ii 0.88 (2) 2.21 (2) 3.0176 (17) 153.4 (19)

Symmetry codes: (i) x−1/2, y+1/2, z; (ii) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2326).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Batovska, D., Parushev, St., Slavova, A., Bankova, V., Tsvetkova, I., Ninova, M. & Najdenski, H. (2007). Eur. J. Med. Chem 42, 87–92. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2010). Acta Cryst. E66, o312–o313. [DOI] [PMC free article] [PubMed]
  6. Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894. [DOI] [PMC free article] [PubMed]
  7. Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron 27, 861–867.
  8. Kim, E.-J., Ryu, H. W., Curtis-Long, M. J., Han, J., Kim, J. Y., Cho, J. K., Kang, D. & Park, K. H. (2010). Bioorg. Med. Chem. Lett 20, 4237–4239. [DOI] [PubMed]
  9. Nielsen, S. F., Boesen, T., Larsen, M., Schønning, K. & Kromann, H. (2004). Bioorg. Med. Chem 12, 3047–3054. [DOI] [PubMed]
  10. Niu, C. G., Guan, A. L., Zeng, G. M., Liu, Y. G. & Li, Z. W. (2006). Anal. Chim. Acta, 577, 264–270. [DOI] [PubMed]
  11. Romagnoli, R., Baraldi, P. G., Carrion, M. D., Cara, C. L., Cruz-Lopez, O., Preti, D., Tolomeo, M., Grimaudo, S., Cristina, A. D., Zonta, N., Balzarini, J., Brancale, A., Sarkar, T. & Hamel, E. (2008). Bioorg. Med. Chem 16, 5367–5376. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575–o1576. [DOI] [PMC free article] [PubMed]
  15. Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol 25, 503–508.
  16. Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem 40, 103–112. [DOI] [PubMed]
  17. Xia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Nakanishi, Y. & Lee, K.-H. (2000). Bioorg. Med. Chem. Lett 10, 699–701. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026346/fj2326sup1.cif

e-66-o1973-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026346/fj2326Isup2.hkl

e-66-o1973-Isup2.hkl (220.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES