Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 21;66(Pt 8):o2062. doi: 10.1107/S1600536810028163

(E)-4-Bromo-N-(2,3,4-trimeth­oxy­benzyl­idene)aniline

Karla Fejfarová a,*, Aliakbar Dehno Khalaji b, Michal Dušek a
PMCID: PMC3007382  PMID: 21588366

Abstract

The title Schiff base compound, C16H16BrNO3, adopts an E configuration with respect to the C=N bond. The dihedral angle between the two aromatic rings is 64.02 (6)°.

Related literature

For applications of Schiff-base compounds, see: Yildiz et al. (2008); Hijji et al. (2009); Karakas et al. (2008); Hadjoudis et al. (2004). For related structures, see: Khalaji et al. (2007, 2008, 2009, 2010); Khalaji & Harrison (2008); Khalaji & Simpson (2009). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-66-o2062-scheme1.jpg

Experimental

Crystal data

  • C16H16BrNO3

  • M r = 350.2

  • Triclinic, Inline graphic

  • a = 7.9103 (3) Å

  • b = 9.9902 (4) Å

  • c = 10.7821 (3) Å

  • α = 93.068 (3)°

  • β = 108.568 (3)°

  • γ = 109.679 (3)°

  • V = 748.10 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.83 mm−1

  • T = 120 K

  • 0.49 × 0.38 × 0.25 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini Ultra Cu) detector

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.308, T max = 0.631

  • 11571 measured reflections

  • 2546 independent reflections

  • 2485 reflections with I > 3σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.093

  • S = 1.73

  • 2546 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810028163/fk2021sup1.cif

e-66-o2062-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028163/fk2021Isup2.hkl

e-66-o2062-Isup2.hkl (122.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Golestan University (GU), the Institutional research plan No. AVOZ1010051 of the Institute of Physics and the Praemium academiae project of the Academy of Sciences of the Czech Republic.

supplementary crystallographic information

Comment

The chemistry of Schiff-bases is very diverse because of a variety of possible substituents with different electron donating and withdrawing groups (Yildiz et al., 2008; Hijji et al., 2009; Karakas et al., 2008). These compounds have been studied for their use as anion sensors (Hijji et al., 2009), antimicrobial activity (Yildiz et al., 2008), photochromism and thermochromism (Hadjoudis et al., 2004) and nonlinear optical properties (Karakas et al., 2008). As a continuation of our work on the synthesis and structural characterization of Schiff-base compounds we report the synthesis and crystal structure of (E)-4-bromo-N-(2,3-dimethoxybenzylidene)aniline (1).

An ORTEP plot, with the atomic numbering scheme is depicted in Fig. 1. Bond lengths in the title compound are normal (Allen et al., 1987). The C1—N1 and C11—N1 bond lengths of 1.286 (3) and 1.415 (3) Å, respectively, conform to the value for a double and single bonds as found in similar Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji et al., 2008; Khalaji & Simpson, 2009; Khalaji et al., 2009; Khalaji et al., 2010). The dihedral angle between the two aromatic rings is 64.02 (6)°, while the plane through the central C1—N1—C1—C2 system is inclined at 21.65 (18)° to the dimethoxyphenyl ring and 42.37 (18)° to the bromobenzene ring. The two methoxy groups attached at C3 and C4 are twisted away from the C2—C7 benzene ring, with corresponding torsion angles C8—O1—C3—C2, C9—O2—C4—C3 of 103.6 (2)°, -88.7 (2)°, respectively. The third methoxy group attached at C5 is almost coplanar with the C2—C7 ring, as shown by the torsion angle C10—O3—C5—C6 of -7.2 (3)°.

Experimental

The title compound was prepared in 83% yield from 2,3,4-trimethoxybenzaldehyde and 4-bromoaniline as reported elsewhere (Khalaji & Harrison, 2008) and recrystallized from chloroform. Anal. Calc. for C16H16BrNO3: C, 54.87; H, 4.60; N, 4.00%. Found: C, 54.66; H, 4.52; N, 4.06%. IR (KBr pellet, cm-1): 2911–2998 (m, C—H aromatic and aliphatic), 2837 (s, –CH=N–); 1615 (s, C=N), 1413–1594 (C=C aromatic).

Refinement

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice the H atoms were placed in geometrically ideal positions and allowed to ride on their respective parent atoms, with C—H distance of 0.96 Å. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2*Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C16H16BrNO3 Z = 2
Mr = 350.2 F(000) = 356
Triclinic, P1 Dx = 1.554 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 7.9103 (3) Å Cell parameters from 11782 reflections
b = 9.9902 (4) Å θ = 4.4–66.7°
c = 10.7821 (3) Å µ = 3.83 mm1
α = 93.068 (3)° T = 120 K
β = 108.568 (3)° Irregular shape, colourless
γ = 109.679 (3)° 0.49 × 0.38 × 0.25 mm
V = 748.10 (5) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini Ultra Cu) detector 2546 independent reflections
Radiation source: X-ray tube 2485 reflections with I > 3σ(I)
mirror Rint = 0.023
Detector resolution: 10.3784 pixels mm-1 θmax = 65.1°, θmin = 4.4°
Rotation method data acquisition using ω scans h = −9→9
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) k = −11→11
Tmin = 0.308, Tmax = 0.631 l = −12→12
11571 measured reflections

Refinement

Refinement on F2 64 constraints
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.093 Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0025000002I2]
S = 1.73 (Δ/σ)max = 0.010
2546 reflections Δρmax = 0.29 e Å3
190 parameters Δρmin = −0.28 e Å3
0 restraints

Special details

Experimental. CrysAlisPro (Oxford Diffraction, 2009). Analytical numeric absorption correction using a multifaceted crystal model.
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.74999 (3) 0.08307 (2) 0.325568 (16) 0.02973 (14)
O1 0.27449 (16) 0.17106 (14) 0.96566 (12) 0.0209 (5)
O2 0.28261 (17) 0.27191 (14) 1.21239 (13) 0.0204 (5)
O3 0.58807 (17) 0.49203 (14) 1.37866 (12) 0.0217 (5)
N1 0.7545 (2) 0.28811 (17) 0.86865 (15) 0.0205 (6)
C1 0.5987 (2) 0.27332 (18) 0.88986 (17) 0.0196 (6)
C2 0.6019 (2) 0.33388 (19) 1.01757 (17) 0.0183 (6)
C3 0.4387 (2) 0.27855 (18) 1.05351 (17) 0.0179 (6)
C4 0.4391 (2) 0.33244 (18) 1.17524 (16) 0.0177 (6)
C5 0.6034 (2) 0.44399 (19) 1.26324 (17) 0.0188 (6)
C6 0.7671 (2) 0.50042 (19) 1.22894 (17) 0.0205 (7)
C7 0.7633 (2) 0.4451 (2) 1.10740 (17) 0.0209 (7)
C8 0.2463 (3) 0.0301 (2) 1.0001 (2) 0.0275 (7)
C9 0.1411 (2) 0.3364 (2) 1.16845 (19) 0.0225 (7)
C10 0.7574 (3) 0.5963 (2) 1.4782 (2) 0.0283 (8)
C11 0.7401 (2) 0.23365 (19) 0.74029 (17) 0.0190 (6)
C12 0.8644 (2) 0.16622 (19) 0.73130 (18) 0.0214 (7)
C13 0.8630 (3) 0.1162 (2) 0.60794 (19) 0.0228 (7)
C14 0.7397 (3) 0.1383 (2) 0.49439 (18) 0.0212 (7)
C15 0.6134 (3) 0.2048 (2) 0.50017 (19) 0.0232 (7)
C16 0.6156 (3) 0.2530 (2) 0.62404 (18) 0.0224 (7)
H1 0.477112 0.22121 0.820107 0.0236*
H6 0.880465 0.576586 1.289179 0.0246*
H7 0.875405 0.484421 1.084082 0.0251*
H8a 0.117756 −0.035146 0.948638 0.0329*
H8b 0.336604 −0.004589 0.981472 0.0329*
H8c 0.265545 0.035921 1.093009 0.0329*
H9a 0.039226 0.294309 1.201348 0.0269*
H9b 0.200061 0.438601 1.201714 0.0269*
H9c 0.089588 0.3194 1.073 0.0269*
H10a 0.725742 0.625109 1.551587 0.034*
H10b 0.852651 0.554334 1.508865 0.034*
H10c 0.807226 0.679308 1.440879 0.034*
H12 0.95208 0.154077 0.810937 0.0256*
H13 0.946288 0.067032 0.60173 0.0274*
H15 0.526458 0.217114 0.42029 0.0278*
H16 0.530309 0.300348 0.629778 0.0268*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03787 (19) 0.03187 (19) 0.02105 (19) 0.00904 (13) 0.01747 (12) 0.00097 (11)
O1 0.0192 (6) 0.0209 (7) 0.0176 (6) 0.0033 (5) 0.0045 (5) 0.0034 (5)
O2 0.0202 (6) 0.0239 (7) 0.0230 (7) 0.0091 (5) 0.0132 (5) 0.0103 (5)
O3 0.0227 (6) 0.0259 (7) 0.0175 (6) 0.0079 (5) 0.0099 (5) 0.0019 (5)
N1 0.0230 (7) 0.0245 (8) 0.0159 (7) 0.0089 (6) 0.0090 (6) 0.0047 (6)
C1 0.0214 (8) 0.0192 (8) 0.0189 (9) 0.0072 (7) 0.0078 (7) 0.0067 (7)
C2 0.0206 (8) 0.0211 (8) 0.0174 (8) 0.0098 (7) 0.0094 (7) 0.0071 (7)
C3 0.0179 (8) 0.0183 (8) 0.0178 (8) 0.0071 (7) 0.0059 (6) 0.0058 (7)
C4 0.0196 (8) 0.0197 (8) 0.0192 (8) 0.0096 (7) 0.0107 (7) 0.0095 (7)
C5 0.0214 (8) 0.0216 (9) 0.0177 (8) 0.0104 (7) 0.0093 (7) 0.0069 (7)
C6 0.0196 (8) 0.0213 (9) 0.0199 (9) 0.0059 (7) 0.0082 (7) 0.0030 (7)
C7 0.0201 (8) 0.0238 (9) 0.0213 (9) 0.0073 (7) 0.0114 (7) 0.0060 (7)
C8 0.0309 (9) 0.0197 (9) 0.0304 (11) 0.0044 (8) 0.0147 (8) 0.0038 (8)
C9 0.0187 (9) 0.0268 (9) 0.0248 (10) 0.0093 (8) 0.0105 (7) 0.0066 (7)
C10 0.0256 (9) 0.0369 (11) 0.0186 (9) 0.0094 (8) 0.0066 (7) −0.0024 (8)
C11 0.0192 (8) 0.0185 (8) 0.0188 (9) 0.0039 (7) 0.0091 (7) 0.0044 (7)
C12 0.0208 (8) 0.0256 (9) 0.0208 (9) 0.0097 (7) 0.0098 (7) 0.0078 (7)
C13 0.0232 (9) 0.0227 (9) 0.0265 (10) 0.0097 (7) 0.0126 (7) 0.0055 (7)
C14 0.0261 (9) 0.0205 (9) 0.0186 (9) 0.0053 (7) 0.0140 (7) 0.0022 (7)
C15 0.0277 (9) 0.0249 (9) 0.0185 (9) 0.0105 (8) 0.0088 (7) 0.0083 (7)
C16 0.0255 (9) 0.0241 (9) 0.0223 (9) 0.0118 (7) 0.0116 (7) 0.0066 (7)

Geometric parameters (Å, °)

Br1—C14 1.908 (2) C8—H8a 0.96
O1—C3 1.3805 (16) C8—H8b 0.96
O1—C8 1.438 (2) C8—H8c 0.96
O2—C4 1.377 (2) C9—H9a 0.96
O2—C9 1.440 (3) C9—H9b 0.96
O3—C5 1.365 (2) C9—H9c 0.96
O3—C10 1.4342 (19) C10—H10a 0.96
N1—C1 1.286 (3) C10—H10b 0.96
N1—C11 1.415 (3) C10—H10c 0.96
C1—C2 1.463 (3) C11—C12 1.390 (3)
C1—H1 0.96 C11—C16 1.395 (3)
C2—C3 1.408 (3) C12—C13 1.391 (3)
C2—C7 1.3946 (19) C12—H12 0.96
C3—C4 1.391 (3) C13—C14 1.383 (3)
C4—C5 1.3990 (19) C13—H13 0.96
C5—C6 1.403 (3) C14—C15 1.387 (3)
C6—C7 1.382 (3) C15—C16 1.388 (3)
C6—H6 0.96 C15—H15 0.96
C7—H7 0.96 C16—H16 0.96
C3—O1—C8 113.46 (13) O2—C9—H9a 109.4709
C4—O2—C9 112.97 (15) O2—C9—H9b 109.4713
C5—O3—C10 117.80 (15) O2—C9—H9c 109.4711
C1—N1—C11 118.43 (13) H9a—C9—H9b 109.4714
N1—C1—C2 121.70 (13) H9a—C9—H9c 109.4709
N1—C1—H1 119.1502 H9b—C9—H9c 109.4718
C2—C1—H1 119.1489 O3—C10—H10a 109.4713
C1—C2—C3 119.84 (13) O3—C10—H10b 109.4716
C1—C2—C7 122.20 (18) O3—C10—H10c 109.4711
C3—C2—C7 117.96 (17) H10a—C10—H10b 109.4714
O1—C3—C2 119.60 (16) H10a—C10—H10c 109.4707
O1—C3—C4 119.38 (16) H10b—C10—H10c 109.4713
C2—C3—C4 121.01 (13) N1—C11—C12 117.91 (16)
O2—C4—C3 120.43 (12) N1—C11—C16 122.8 (2)
O2—C4—C5 119.83 (17) C12—C11—C16 119.21 (19)
C3—C4—C5 119.66 (17) C11—C12—C13 120.60 (17)
O3—C5—C4 115.31 (17) C11—C12—H12 119.6985
O3—C5—C6 124.62 (13) C13—C12—H12 119.6991
C4—C5—C6 120.06 (17) C12—C13—C14 118.9 (2)
C5—C6—C7 119.23 (13) C12—C13—H13 120.5337
C5—C6—H6 120.3876 C14—C13—H13 120.5339
C7—C6—H6 120.3865 Br1—C14—C13 119.31 (18)
C2—C7—C6 122.09 (18) Br1—C14—C15 118.89 (14)
C2—C7—H7 118.9551 C13—C14—C15 121.8 (2)
C6—C7—H7 118.9554 C14—C15—C16 118.52 (18)
O1—C8—H8a 109.4712 C14—C15—H15 120.7399
O1—C8—H8b 109.4712 C16—C15—H15 120.7397
O1—C8—H8c 109.4713 C11—C16—C15 120.9 (2)
H8a—C8—H8b 109.4713 C11—C16—H16 119.5302
H8a—C8—H8c 109.4709 C15—C16—H16 119.5303
H8b—C8—H8c 109.4714
C8—O1—C3—C2 103.6 (2) C11—N1—C1—C2 −176.48 (16)
C8—O1—C3—C4 −77.6 (2) C1—N1—C11—C12 −140.37 (18)
C9—O2—C4—C3 −88.7 (2) C1—N1—C11—C16 43.7 (3)
C9—O2—C4—C5 94.54 (19) N1—C1—C2—C3 −159.30 (17)
C10—O3—C5—C4 174.08 (16) N1—C1—C2—C7 20.0 (3)
C10—O3—C5—C6 −7.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
?—?···? ? ? ? ?

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2021).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  4. Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Aziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. A, 162, 521–530.
  5. Hijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2009). Sens. Actuators B, 136, 297–302.
  6. Karakas, A., Univer, H. & Elmali, A. (2008). J. Mol. Struct.877, 152–157.
  7. Khalaji, A. D., Fejfarová, K. & Dušek, M. (2010). Acta Chim. Slov.57, 257–261. [PubMed]
  8. Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci.24, x3–x4.
  9. Khalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o553. [DOI] [PMC free article] [PubMed]
  10. Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.
  11. Khalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o436. [DOI] [PMC free article] [PubMed]
  12. Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008). Anal. Sci.24, x138–x139.
  13. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  14. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Prague, Czech Republic.
  15. Yildiz, M., Unver, H., Dulger, B., Erdener, D., Ocak, N., Erdonmez, A. & Durlu, T. N. (2008). J. Mol. Struct.738, 253–260.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810028163/fk2021sup1.cif

e-66-o2062-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028163/fk2021Isup2.hkl

e-66-o2062-Isup2.hkl (122.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES