Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 21;66(Pt 8):o2073. doi: 10.1107/S1600536810027935

(2Z,NE)-N′-[(2-Hy­droxy-1-naphth­yl)methyl­idene]furan-2-carbohydrazonic acid

Rahman Bikas a,*, Hassan Hosseini Monfared a, Keyvan Bijanzad b, Ahmet Koroglu c, Canan Kazak c
PMCID: PMC3007385  PMID: 21588374

Abstract

In the title compound, C16H12N2O3, the dihedral angle between the mean planes of the naphthalene ring system and the furan ring is 21.3 (6)°. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) graph-set motif.

Related literature

For historical background to aroylhydrazones, see: Arapov et al. (1987); Pickart et al. (1983); Offe et al. (1952); Nagaraju et al. (2009); Ghosh et al. (2007). For related structures, see: Monfared et al. (2010); Ali et al. (2005); Qian et al. (2006); Tarafder et al. (2002); Prathapachandra Kurup & Bessy Raj (2007). For graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995); Etter et al. (1990). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-o2073-scheme1.jpg

Experimental

Crystal data

  • C16H12N2O3

  • M r = 280.28

  • Orthorhombic, Inline graphic

  • a = 9.7427 (8) Å

  • b = 21.4182 (8) Å

  • c = 6.445 (2) Å

  • V = 1344.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.31 × 0.27 × 0.15 mm

Data collection

  • STOE IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.970, T max = 0.985

  • 7278 measured reflections

  • 1440 independent reflections

  • 944 reflections with I > 2σ(I)

  • R int = 0.097

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.095

  • S = 1.02

  • 1440 reflections

  • 191 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027935/jj2034sup1.cif

e-66-o2073-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027935/jj2034Isup2.hkl

e-66-o2073-Isup2.hkl (69.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.84 2.565 (5) 146

Acknowledgments

The authors are grateful to Zanjan University and Ondokuz Mayis University.

supplementary crystallographic information

Comment

Hydrazone ligands derived from the condensation of aliphatic acid hydrazides or aromatic acid hydrazides with aromatic 2-hydroxy carbonyl compounds are important tridentate O, N,O-donor ligands. These compounds, due to their facile keto-enol tautomerization and the availability of several potential donor sites, can coordinate to metals. Furthermore, the possibility of tautomerism makes their study interesting (Ghosh et al., 2007). Hydrazones have wide spread applications in coordination, analytical and bioinorganic chemistry, and display magnetic, electronic, NLO and fluorescent properties in biologically active compounds (Prathapachandra Kurup et al., 2007). They find applications in the treatment of diseases such as anti-tumor, tuberculosis, leprosy and mental disorder (Nagaraju et al., 2009). As part of our studies on the synthesis and characterization of aroylhydrazone derivatives, we report here the crystal structure of C16H12N2O3.

In the title compound, C16H12N2O3, the dihedral angle between the mean planes of the naphthalene and furan rings is 21.3 (6)° (Fig.1). The angle formed between the menn planes of the naphthalene substituted hydroxy group (C11/C10/C1/O1/H1) and the 2-carbohydrazonic acid furan substituted hydroxy group (N1/N2/C12/O2/H22) is 17.9 (1)°. Bond distances and angles are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by O1—H1···N1 intramolecular hydrogen bonds which form an S11(6) graph-set motif (Bernstein et al., 1995), Etter et al., 1990), (Fig. 2).

Experimental

All reagents were commercially available and used as received. A methanol (10 ml) solution of 2-hydroxy-1-naphtaldehyde (1.5 mmol) was drop-wise added to a methanol solution (10 ml) of 2-furanecarboxylic acid hydrazide (1.5 mmol), and the mixture was refluxed for 3 h. Then the solution was evaporated on a steam bath to 5 cm3 and cooled to room temperature. Yellow precipitates of the title compound were separated and filtered off, washed with 3 ml of cooled methanol and then dried in air. X-ray quality crystals of the title compound were obtained from methanol by slow solvent evaporation. Yield: 82%, mp 197-198 °C.

Refinement

The hydroxyl hydrogen atoms were located by Fourier analysis and refined using the riding model with d(O—H) = 0.82Å [Uiso(H) = 1.5Ueq(O)]. C-bonded H atoms were positioned geometrically (C—H = 0.93 Å) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, C16H12N2O3, with atom labels and anisotropic displacement ellipsoids (drawn at 30% probability level) for non-H atoms.

Fig. 2.

Fig. 2.

View of the unit cell of the title compound, C16H12N2O3, viewed along [110].

Crystal data

C16H12N2O3 Dx = 1.384 Mg m3
Mr = 280.28 Melting point = 470–471 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 8863 reflections
a = 9.7427 (8) Å θ = 1.9–27.1°
b = 21.4182 (8) Å µ = 0.10 mm1
c = 6.445 (2) Å T = 293 K
V = 1344.8 (4) Å3 Prism, colourless
Z = 4 0.31 × 0.27 × 0.15 mm
F(000) = 584

Data collection

STOE IPDS 2 diffractometer 1440 independent reflections
Radiation source: fine-focus sealed tube 944 reflections with I > 2σ(I)
plane graphite Rint = 0.097
Detector resolution: 6.67 pixels mm-1 θmax = 26.0°, θmin = 1.9°
rotation method scans h = −12→10
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −26→24
Tmin = 0.970, Tmax = 0.985 l = −7→7
7278 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.031P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
1440 reflections Δρmax = 0.18 e Å3
191 parameters Δρmin = −0.13 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0063 (17)

Special details

Experimental. 12912 Friedel pairs have been merged
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2976 (5) 0.54675 (18) 0.6316 (7) 0.0451 (11)
C2 0.2057 (5) 0.5256 (2) 0.4789 (8) 0.0522 (12)
H2 0.1969 0.5479 0.3559 0.063*
C3 0.1290 (6) 0.4730 (2) 0.5070 (8) 0.0706 (16)
H3 0.0688 0.4601 0.4036 0.085*
C4 0.1400 (7) 0.4384 (2) 0.6892 (10) 0.0786 (18)
H4 0.0883 0.4022 0.7065 0.094*
C5 0.2262 (6) 0.4574 (2) 0.8410 (10) 0.0714 (16)
H5 0.2320 0.4347 0.9636 0.086*
C6 0.3079 (5) 0.51178 (19) 0.8155 (7) 0.0499 (12)
C7 0.4022 (6) 0.5297 (2) 0.9729 (7) 0.0591 (14)
H7 0.4051 0.5078 1.0974 0.071*
C8 0.4882 (5) 0.5788 (2) 0.9420 (8) 0.0552 (13)
H8 0.5516 0.5897 1.0436 0.066*
C9 0.4814 (5) 0.61298 (19) 0.7575 (7) 0.0474 (11)
C10 0.3861 (5) 0.6002 (2) 0.6042 (6) 0.0406 (10)
C11 0.3758 (5) 0.63934 (18) 0.4226 (6) 0.0440 (11)
H11 0.3027 0.6340 0.3314 0.053*
C12 0.5461 (5) 0.7550 (2) 0.1419 (7) 0.0488 (11)
C13 0.5167 (5) 0.78815 (19) −0.0481 (7) 0.0513 (12)
C14 0.5895 (6) 0.8270 (2) −0.1646 (8) 0.0631 (14)
H14 0.6764 0.8425 −0.1343 0.076*
C15 0.5117 (7) 0.8404 (3) −0.3412 (9) 0.0810 (19)
H15 0.5371 0.8661 −0.4511 0.097*
C16 0.3952 (7) 0.8095 (3) −0.3215 (9) 0.0783 (18)
H16 0.3240 0.8102 −0.4178 0.094*
N1 0.4666 (4) 0.68174 (16) 0.3852 (6) 0.0488 (10)
N2 0.4425 (4) 0.71739 (15) 0.2109 (6) 0.0495 (10)
O1 0.5751 (3) 0.65972 (14) 0.7404 (5) 0.0632 (10)
H1 0.5641 0.6779 0.6296 0.095*
O2 0.6585 (3) 0.76014 (14) 0.2278 (5) 0.0658 (10)
H22 0.6598 0.7385 0.3328 0.099*
O3 0.3934 (3) 0.77680 (15) −0.1422 (6) 0.0675 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.050 (3) 0.037 (2) 0.048 (3) 0.008 (2) 0.011 (2) 0.001 (2)
C2 0.052 (3) 0.048 (3) 0.056 (3) 0.002 (2) 0.008 (3) −0.001 (2)
C3 0.075 (4) 0.056 (3) 0.081 (4) −0.017 (3) 0.005 (3) −0.006 (3)
C4 0.084 (5) 0.052 (3) 0.100 (5) −0.015 (3) 0.023 (4) 0.005 (4)
C5 0.076 (4) 0.058 (3) 0.080 (4) 0.001 (3) 0.015 (4) 0.009 (3)
C6 0.052 (3) 0.040 (2) 0.057 (3) 0.010 (2) 0.011 (2) 0.002 (2)
C7 0.073 (4) 0.057 (3) 0.047 (3) 0.023 (3) 0.002 (3) 0.013 (2)
C8 0.055 (3) 0.060 (3) 0.050 (3) 0.016 (3) −0.007 (2) −0.011 (3)
C9 0.046 (3) 0.042 (2) 0.054 (3) 0.008 (2) −0.001 (2) −0.003 (2)
C10 0.036 (3) 0.043 (2) 0.043 (2) 0.011 (2) 0.003 (2) 0.001 (2)
C11 0.037 (3) 0.047 (2) 0.049 (3) 0.001 (2) 0.000 (2) −0.002 (2)
C12 0.036 (3) 0.054 (3) 0.056 (3) −0.002 (2) 0.005 (2) −0.008 (2)
C13 0.044 (3) 0.047 (2) 0.063 (3) 0.000 (2) 0.007 (3) 0.005 (2)
C14 0.059 (3) 0.060 (3) 0.070 (3) −0.018 (3) 0.012 (3) 0.009 (3)
C15 0.087 (5) 0.075 (4) 0.081 (4) 0.011 (4) 0.027 (4) 0.034 (3)
C16 0.060 (4) 0.087 (4) 0.088 (5) 0.022 (3) 0.011 (3) 0.033 (4)
N1 0.038 (2) 0.050 (2) 0.058 (3) −0.002 (2) 0.0096 (18) 0.0013 (19)
N2 0.043 (2) 0.0485 (19) 0.057 (2) −0.0082 (18) 0.0117 (19) 0.0134 (19)
O1 0.056 (2) 0.060 (2) 0.074 (2) −0.0063 (18) −0.0109 (19) −0.0017 (18)
O2 0.056 (2) 0.078 (2) 0.064 (2) −0.0186 (18) 0.001 (2) 0.0063 (19)
O3 0.040 (2) 0.078 (2) 0.085 (3) 0.0037 (18) 0.0047 (19) 0.0323 (19)

Geometric parameters (Å, °)

C1—C2 1.406 (6) C10—C11 1.443 (6)
C1—C6 1.406 (6) C11—N1 1.291 (5)
C1—C10 1.444 (6) C11—H11 0.9300
C2—C3 1.364 (7) C12—O2 1.232 (5)
C2—H2 0.9300 C12—N2 1.366 (5)
C3—C4 1.393 (8) C12—C13 1.444 (6)
C3—H3 0.9300 C13—C14 1.326 (6)
C4—C5 1.352 (8) C13—O3 1.367 (5)
C4—H4 0.9300 C14—C15 1.398 (7)
C5—C6 1.420 (7) C14—H14 0.9300
C5—H5 0.9300 C15—C16 1.321 (8)
C6—C7 1.422 (7) C15—H15 0.9300
C7—C8 1.359 (7) C16—O3 1.352 (6)
C7—H7 0.9300 C16—H16 0.9300
C8—C9 1.397 (6) N1—N2 1.379 (5)
C8—H8 0.9300 O1—H1 0.8200
C9—O1 1.359 (5) O2—H22 0.8200
C9—C10 1.384 (6)
C2—C1—C6 117.6 (4) C9—C10—C11 120.7 (4)
C2—C1—C10 123.4 (4) C9—C10—C1 118.1 (4)
C6—C1—C10 118.9 (4) C11—C10—C1 121.2 (4)
C3—C2—C1 121.5 (5) N1—C11—C10 120.8 (4)
C3—C2—H2 119.3 N1—C11—H11 119.6
C1—C2—H2 119.3 C10—C11—H11 119.6
C2—C3—C4 120.6 (5) O2—C12—N2 124.3 (4)
C2—C3—H3 119.7 O2—C12—C13 120.9 (4)
C4—C3—H3 119.7 N2—C12—C13 114.8 (4)
C5—C4—C3 119.8 (5) C14—C13—O3 109.3 (4)
C5—C4—H4 120.1 C14—C13—C12 133.0 (5)
C3—C4—H4 120.1 O3—C13—C12 117.6 (4)
C4—C5—C6 120.8 (6) C13—C14—C15 107.5 (5)
C4—C5—H5 119.6 C13—C14—H14 126.3
C6—C5—H5 119.6 C15—C14—H14 126.3
C1—C6—C5 119.6 (5) C16—C15—C14 106.5 (5)
C1—C6—C7 120.3 (4) C16—C15—H15 126.7
C5—C6—C7 120.1 (5) C14—C15—H15 126.7
C8—C7—C6 120.2 (5) C15—C16—O3 110.7 (6)
C8—C7—H7 119.9 C15—C16—H16 124.7
C6—C7—H7 119.9 O3—C16—H16 124.7
C7—C8—C9 120.0 (5) C11—N1—N2 115.1 (4)
C7—C8—H8 120.0 C12—N2—N1 117.7 (4)
C9—C8—H8 120.0 C9—O1—H1 109.5
O1—C9—C10 122.6 (4) C12—O2—H22 109.5
O1—C9—C8 115.0 (5) C16—O3—C13 106.0 (4)
C10—C9—C8 122.4 (5)
C6—C1—C2—C3 −0.1 (7) C6—C1—C10—C9 2.6 (6)
C10—C1—C2—C3 176.6 (4) C2—C1—C10—C11 6.2 (6)
C1—C2—C3—C4 −0.2 (8) C6—C1—C10—C11 −177.3 (4)
C2—C3—C4—C5 0.9 (9) C9—C10—C11—N1 9.5 (6)
C3—C4—C5—C6 −1.3 (8) C1—C10—C11—N1 −170.6 (4)
C2—C1—C6—C5 −0.3 (6) O2—C12—C13—C14 −0.1 (8)
C10—C1—C6—C5 −177.1 (4) N2—C12—C13—C14 −178.3 (5)
C2—C1—C6—C7 178.0 (4) O2—C12—C13—O3 175.5 (4)
C10—C1—C6—C7 1.2 (6) N2—C12—C13—O3 −2.6 (6)
C4—C5—C6—C1 1.0 (7) O3—C13—C14—C15 −0.9 (5)
C4—C5—C6—C7 −177.3 (5) C12—C13—C14—C15 175.0 (5)
C1—C6—C7—C8 −3.5 (7) C13—C14—C15—C16 0.7 (6)
C5—C6—C7—C8 174.8 (5) C14—C15—C16—O3 −0.1 (7)
C6—C7—C8—C9 1.8 (7) C10—C11—N1—N2 −177.8 (4)
C7—C8—C9—O1 −177.9 (4) O2—C12—N2—N1 −1.6 (6)
C7—C8—C9—C10 2.2 (7) C13—C12—N2—N1 176.5 (4)
O1—C9—C10—C11 −4.3 (6) C11—N1—N2—C12 −168.4 (4)
C8—C9—C10—C11 175.5 (4) C15—C16—O3—C13 −0.5 (6)
O1—C9—C10—C1 175.7 (4) C14—C13—O3—C16 0.9 (5)
C8—C9—C10—C1 −4.5 (6) C12—C13—O3—C16 −175.7 (4)
C2—C1—C10—C9 −173.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.84 2.565 (5) 146

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2034).

References

  1. Ali, H. M., Puvaneswary, S., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, o1079–o1080.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Arapov, O. V., Alferva, O. F., Levocheskaya, E. I. & Krasilnikov, I. (1987). Radiobiologiya, 27, 843–846. [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Ghosh, T., Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G. & Drew, M. G. B. (2007). Inorg. Chim. Acta, 360, 1753–1761.
  9. Monfared, H. H., Bikas, R. & Mayer, P. (2010). Acta Cryst. E66, o236–o237. [DOI] [PMC free article] [PubMed]
  10. Nagaraju, C., Avaji, P. G., Vinod Kumar, C. H., Patil, S. A. & Shivananda, K. N. (2009). Eur. J. Med. Chem.44, 3552–3559. [DOI] [PubMed]
  11. Offe, H. A., Siefken, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 462–468.
  12. Pickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol.32, 3868–3871. [DOI] [PubMed]
  13. Prathapachandra Kurup, M. R., Bessy Raj, B. N., (2007). Spectrochim. Acta Part A, 66, 898–903. [DOI] [PubMed]
  14. Qian, H.-Y., Yin, Z.-G., Jia, J., Liu, S.-M. & Feng, L.-Q. (2006). Acta Cryst. E62, o3623–o3624.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  17. Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027935/jj2034sup1.cif

e-66-o2073-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027935/jj2034Isup2.hkl

e-66-o2073-Isup2.hkl (69.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES