Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 31;66(Pt 8):o2178–o2179. doi: 10.1107/S1600536810029910

4-[3-(Phen­oxy­meth­yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl]-3-(p-tol­yl)sydnone

Jia Hao Goh a,, Hoong-Kun Fun a,*,§, Nithinchandra b, B Kalluraya b
PMCID: PMC3007409  PMID: 21588457

Abstract

In the title triazolothia­diazine derivative, C20H16N6O3S {systematic name: 3-(4-methyl­phen­yl)-4-[3-(phen­oxy­meth­yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl]-1,2,3-oxadiazol-3-ium-5-olate}, an S(6) ring motif is generated by an intra­molecular C—H⋯O hydrogen bond. The 3,6-dihydro-1,3,4-thia­diazine ring adopts a twist-boat conformation. The dihedral angle between the 1,2,3-oxadiazole and 1,2,4-triazole rings is 46.45 (14)°. The 1,2,3-oxadiazole ring is inclined at dihedral angle of 59.49 (13)° with respect to the benzene ring attached to it. In the crystal structure, inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link neighbouring mol­ecules into two-mol­ecule-thick arrays parallel to the bc plane. A short S⋯O inter­action [2.9565 (19) Å] also occurs.

Related literature

For general background to and applications of materials related to the title compound, see: Kalluraya & Rahiman (1997); Newton & Ramsden (1982); Wagner & Hill (1974). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Goh et al. (2010a,b,c ). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-66-o2178-scheme1.jpg

Experimental

Crystal data

  • C20H16N6O3S

  • M r = 420.45

  • Monoclinic, Inline graphic

  • a = 20.6555 (7) Å

  • b = 8.1918 (3) Å

  • c = 11.1979 (4) Å

  • β = 96.127 (2)°

  • V = 1883.93 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.26 × 0.13 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.947, T max = 0.985

  • 17653 measured reflections

  • 4318 independent reflections

  • 2829 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.133

  • S = 1.03

  • 4318 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810029910/hb5566sup1.cif

e-66-o2178-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029910/hb5566Isup2.hkl

e-66-o2178-Isup2.hkl (211.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O3 0.97 2.26 3.026 (3) 135
C10—H10A⋯O3i 0.97 2.55 3.165 (3) 122
C10—H10B⋯O3ii 0.97 2.44 3.279 (3) 145
C19—H19A⋯N5iii 0.93 2.61 3.491 (3) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

Sydnones are a novel class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. A number of sydnone derivatives have shown diverse biological activities such as anti-inflammatory, analgesic and anti-arthritic (Newton & Ramsden, 1982; Wagner & Hill, 1974) properties. Sydnones possessing heterocyclic moieties at the 4-position are also known for a wide range of biological properties (Kalluraya & Rahiman, 1997). Encouraged by these reports and in continuation of our research for biologically active nitrogen containing heterocycles, a triazolothiadiazine moiety at the 4-position of the phenylsydnone was introduced.

In the title triazolothiadiazine derivative, an intramolecular C10—H10A···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The 3,6-dihydro-1,3,4-thiadiazine ring (C9-C11/N3/N4/S1) adopts twist-boat conformation, with puckering parameters of Q = 0.634 (2) Å, θ = 67.08 (18)° and φ = 322.1 (2)° (Cremer & Pople, 1975). The dihedral angle formed between these essentially planar 1,2,3-oxadiazole (C12/C13/O2/N5/N6) and 1,2,4-triazole (C8/N1/N2/C9/N3) rings is 46.45 (14)°. The C1-C6 and C14-C19 phenyl rings are inclined at dihedral angles of 77.56 (14) and 59.49 (13)°, respectively, with respect to 1,2,3-oxadiazole and 1,2,4-triazole rings. The geometric parameters are consistent to those observed in closely related structures (Goh et al., 2010a,b,c).

In the crystal structure, intermolecular C10—H10A···O3, C10—H10B···O3 and C19—H19A···N5 hydrogen bonds (Table 1) interconnect neighbouring molecules into two-molecule-thick arrays parallel to the bc plane (Fig. 2). The interesting feature of the crystal structure is the intermolecular short S1···O3 interaction [2.9565 (19) Å; symmetry code: -x, -y, -z+1], which is significantly shorter than the sum of Van der Waals radii of the relevant atoms, further stabilizing the crystal structure.

Experimental

A solution of triazole (0.01 mol) and 4-bromoacetyl-3-tolylsydnone (0.01 mol) in absolute ethanol (20 ml) was heated under reflux for 10–12 h. The solution was concentrated, cooled to room temperature and neutrallized with 10 % sodium bicarbonate solution. The solid separated was filtered, washed with water, dried and recrystallized from ethanol. Colourless blocks of (I) were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement

All hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. An intramolecular hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

The crystal structure of (I), viewed along the b axis, showing two-molecule-thick arrays parallel to the bc plane. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C20H16N6O3S F(000) = 872
Mr = 420.45 Dx = 1.482 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4257 reflections
a = 20.6555 (7) Å θ = 2.7–30.6°
b = 8.1918 (3) Å µ = 0.21 mm1
c = 11.1979 (4) Å T = 100 K
β = 96.127 (2)° Block, colourless
V = 1883.93 (12) Å3 0.26 × 0.13 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 4318 independent reflections
Radiation source: fine-focus sealed tube 2829 reflections with I > 2σ(I)
graphite Rint = 0.065
φ and ω scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −26→26
Tmin = 0.947, Tmax = 0.985 k = −10→10
17653 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.060P)2 + 0.4167P] where P = (Fo2 + 2Fc2)/3
4318 reflections (Δ/σ)max = 0.003
272 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.06014 (3) 0.33229 (8) 0.37690 (6) 0.01451 (18)
O1 0.28045 (8) 0.2544 (2) 0.08679 (15) 0.0183 (5)
O2 0.10735 (9) −0.3314 (2) 0.48621 (15) 0.0174 (4)
O3 0.01271 (9) −0.1961 (2) 0.43267 (15) 0.0168 (4)
N1 0.16326 (10) 0.4933 (3) 0.13016 (18) 0.0159 (5)
N2 0.12096 (10) 0.5222 (3) 0.21876 (19) 0.0159 (5)
N3 0.14032 (10) 0.2588 (3) 0.20962 (18) 0.0119 (5)
N4 0.15133 (10) 0.0982 (3) 0.24765 (18) 0.0134 (5)
N5 0.17122 (11) −0.3211 (3) 0.46629 (19) 0.0167 (5)
N6 0.17491 (10) −0.1933 (3) 0.39705 (18) 0.0130 (5)
C1 0.38786 (14) 0.2084 (4) 0.0490 (2) 0.0226 (7)
H1A 0.4012 0.2624 0.1204 0.027*
C2 0.43384 (14) 0.1464 (4) −0.0207 (3) 0.0282 (8)
H2A 0.4779 0.1602 0.0040 0.034*
C3 0.41449 (14) 0.0641 (4) −0.1269 (3) 0.0263 (7)
H3A 0.4453 0.0212 −0.1730 0.032*
C4 0.34920 (14) 0.0469 (4) −0.1629 (3) 0.0235 (7)
H4A 0.3361 −0.0070 −0.2345 0.028*
C5 0.30230 (14) 0.1081 (4) −0.0949 (2) 0.0194 (7)
H5A 0.2583 0.0949 −0.1202 0.023*
C6 0.32231 (13) 0.1897 (3) 0.0121 (2) 0.0168 (6)
C7 0.21295 (12) 0.2477 (3) 0.0432 (2) 0.0149 (6)
H7A 0.1988 0.1348 0.0363 0.018*
H7B 0.2060 0.2974 −0.0357 0.018*
C8 0.17459 (12) 0.3361 (3) 0.1279 (2) 0.0142 (6)
C9 0.10811 (12) 0.3793 (3) 0.2631 (2) 0.0123 (6)
C10 0.04330 (12) 0.1268 (3) 0.3200 (2) 0.0148 (6)
H10A 0.0185 0.0674 0.3746 0.018*
H10B 0.0175 0.1323 0.2424 0.018*
C11 0.10610 (12) 0.0393 (3) 0.3078 (2) 0.0125 (6)
C12 0.11699 (12) −0.1155 (3) 0.3677 (2) 0.0123 (6)
C13 0.07074 (14) −0.2057 (3) 0.4260 (2) 0.0143 (6)
C14 0.24014 (12) −0.1537 (3) 0.3708 (2) 0.0137 (6)
C15 0.28634 (13) −0.1262 (3) 0.4668 (2) 0.0182 (6)
H15A 0.2749 −0.1266 0.5449 0.022*
C16 0.35008 (14) −0.0980 (4) 0.4450 (3) 0.0228 (7)
H16A 0.3817 −0.0798 0.5092 0.027*
C17 0.36760 (14) −0.0964 (4) 0.3281 (3) 0.0213 (7)
C18 0.31939 (13) −0.1232 (3) 0.2334 (2) 0.0206 (7)
H18A 0.3305 −0.1209 0.1551 0.025*
C19 0.25567 (13) −0.1529 (3) 0.2528 (2) 0.0178 (6)
H19A 0.2240 −0.1718 0.1889 0.021*
C20 0.43702 (14) −0.0674 (4) 0.3043 (3) 0.0351 (8)
H20D 0.4422 −0.0966 0.2229 0.053*
H20A 0.4655 −0.1330 0.3581 0.053*
H20B 0.4476 0.0458 0.3169 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0213 (4) 0.0098 (4) 0.0135 (3) 0.0003 (3) 0.0064 (2) 0.0003 (3)
O1 0.0180 (10) 0.0225 (12) 0.0146 (9) 0.0027 (9) 0.0028 (7) −0.0026 (9)
O2 0.0265 (11) 0.0118 (11) 0.0144 (9) 0.0002 (9) 0.0041 (8) 0.0034 (9)
O3 0.0196 (10) 0.0162 (11) 0.0150 (9) −0.0027 (9) 0.0040 (7) 0.0016 (9)
N1 0.0233 (13) 0.0158 (14) 0.0094 (10) −0.0014 (11) 0.0052 (9) 0.0023 (11)
N2 0.0229 (13) 0.0122 (13) 0.0130 (11) 0.0001 (11) 0.0039 (9) 0.0019 (11)
N3 0.0174 (12) 0.0089 (12) 0.0105 (10) −0.0002 (10) 0.0059 (9) 0.0032 (10)
N4 0.0242 (13) 0.0075 (12) 0.0084 (10) 0.0003 (10) 0.0017 (9) 0.0002 (10)
N5 0.0247 (13) 0.0109 (13) 0.0148 (11) −0.0014 (11) 0.0039 (9) −0.0016 (11)
N6 0.0238 (12) 0.0072 (12) 0.0079 (10) −0.0003 (10) 0.0015 (9) −0.0003 (10)
C1 0.0280 (16) 0.0200 (17) 0.0193 (14) 0.0012 (14) 0.0003 (12) −0.0037 (14)
C2 0.0205 (16) 0.030 (2) 0.0342 (17) 0.0029 (14) 0.0025 (13) 0.0007 (17)
C3 0.0305 (18) 0.0229 (18) 0.0278 (16) 0.0045 (15) 0.0143 (13) 0.0008 (15)
C4 0.0322 (17) 0.0199 (17) 0.0193 (14) 0.0023 (15) 0.0079 (12) −0.0012 (14)
C5 0.0237 (15) 0.0181 (17) 0.0169 (14) −0.0030 (13) 0.0040 (11) 0.0005 (14)
C6 0.0217 (15) 0.0133 (16) 0.0161 (13) 0.0035 (13) 0.0058 (11) 0.0055 (13)
C7 0.0207 (14) 0.0135 (16) 0.0109 (12) 0.0000 (12) 0.0039 (10) 0.0030 (12)
C8 0.0195 (14) 0.0126 (15) 0.0107 (12) −0.0032 (13) 0.0015 (10) 0.0031 (13)
C9 0.0167 (14) 0.0087 (15) 0.0117 (12) −0.0004 (12) 0.0020 (10) −0.0001 (12)
C10 0.0205 (14) 0.0086 (15) 0.0156 (13) −0.0019 (12) 0.0025 (11) 0.0021 (12)
C11 0.0177 (14) 0.0122 (15) 0.0074 (12) −0.0003 (12) 0.0009 (10) −0.0039 (12)
C12 0.0164 (14) 0.0105 (15) 0.0103 (12) 0.0006 (12) 0.0028 (10) −0.0036 (12)
C13 0.0304 (16) 0.0058 (15) 0.0070 (12) 0.0004 (13) 0.0035 (11) −0.0005 (12)
C14 0.0172 (14) 0.0087 (15) 0.0154 (13) 0.0023 (12) 0.0023 (10) −0.0015 (13)
C15 0.0287 (16) 0.0152 (16) 0.0111 (12) 0.0022 (13) 0.0040 (11) 0.0014 (13)
C16 0.0243 (16) 0.0198 (17) 0.0236 (15) 0.0013 (14) −0.0002 (12) −0.0005 (15)
C17 0.0239 (16) 0.0148 (16) 0.0265 (16) 0.0010 (13) 0.0083 (12) 0.0040 (14)
C18 0.0293 (16) 0.0177 (17) 0.0164 (13) 0.0048 (14) 0.0097 (12) 0.0033 (13)
C19 0.0291 (16) 0.0108 (16) 0.0134 (13) 0.0039 (13) 0.0023 (11) 0.0005 (13)
C20 0.0268 (17) 0.043 (2) 0.0368 (19) −0.0018 (17) 0.0080 (14) 0.0098 (18)

Geometric parameters (Å, °)

S1—C9 1.739 (3) C4—H4A 0.9300
S1—C10 1.820 (3) C5—C6 1.395 (4)
O1—C6 1.372 (3) C5—H5A 0.9300
O1—C7 1.428 (3) C7—C8 1.487 (4)
O2—N5 1.364 (3) C7—H7A 0.9700
O2—C13 1.406 (3) C7—H7B 0.9700
O3—C13 1.212 (3) C10—C11 1.501 (4)
N1—C8 1.310 (3) C10—H10A 0.9700
N1—N2 1.410 (3) C10—H10B 0.9700
N2—C9 1.310 (3) C11—C12 1.441 (4)
N3—C9 1.364 (3) C12—C13 1.420 (4)
N3—C8 1.371 (3) C14—C15 1.378 (4)
N3—N4 1.395 (3) C14—C19 1.393 (3)
N4—C11 1.301 (3) C15—C16 1.384 (4)
N5—N6 1.310 (3) C15—H15A 0.9300
N6—C12 1.364 (3) C16—C17 1.395 (4)
N6—C14 1.446 (3) C16—H16A 0.9300
C1—C6 1.381 (4) C17—C18 1.392 (4)
C1—C2 1.388 (4) C17—C20 1.505 (4)
C1—H1A 0.9300 C18—C19 1.378 (4)
C2—C3 1.389 (4) C18—H18A 0.9300
C2—H2A 0.9300 C19—H19A 0.9300
C3—C4 1.373 (4) C20—H20D 0.9600
C3—H3A 0.9300 C20—H20A 0.9600
C4—C5 1.389 (4) C20—H20B 0.9600
C9—S1—C10 92.89 (12) N2—C9—S1 129.0 (2)
C6—O1—C7 115.64 (19) N3—C9—S1 120.3 (2)
N5—O2—C13 110.89 (19) C11—C10—S1 109.82 (18)
C8—N1—N2 107.7 (2) C11—C10—H10A 109.7
C9—N2—N1 106.4 (2) S1—C10—H10A 109.7
C9—N3—C8 105.7 (2) C11—C10—H10B 109.7
C9—N3—N4 128.3 (2) S1—C10—H10B 109.7
C8—N3—N4 124.1 (2) H10A—C10—H10B 108.2
C11—N4—N3 113.9 (2) N4—C11—C12 118.8 (2)
N6—N5—O2 105.33 (19) N4—C11—C10 123.0 (2)
N5—N6—C12 114.3 (2) C12—C11—C10 118.1 (2)
N5—N6—C14 114.4 (2) N6—C12—C13 105.2 (2)
C12—N6—C14 131.2 (2) N6—C12—C11 127.8 (2)
C6—C1—C2 120.0 (3) C13—C12—C11 126.3 (2)
C6—C1—H1A 120.0 O3—C13—O2 120.2 (2)
C2—C1—H1A 120.0 O3—C13—C12 135.5 (3)
C1—C2—C3 120.5 (3) O2—C13—C12 104.3 (2)
C1—C2—H2A 119.8 C15—C14—C19 121.9 (2)
C3—C2—H2A 119.8 C15—C14—N6 117.5 (2)
C4—C3—C2 119.0 (3) C19—C14—N6 120.5 (2)
C4—C3—H3A 120.5 C14—C15—C16 118.8 (2)
C2—C3—H3A 120.5 C14—C15—H15A 120.6
C3—C4—C5 121.5 (3) C16—C15—H15A 120.6
C3—C4—H4A 119.2 C15—C16—C17 120.9 (3)
C5—C4—H4A 119.2 C15—C16—H16A 119.5
C4—C5—C6 119.0 (3) C17—C16—H16A 119.5
C4—C5—H5A 120.5 C18—C17—C16 118.5 (3)
C6—C5—H5A 120.5 C18—C17—C20 120.6 (3)
O1—C6—C1 115.9 (2) C16—C17—C20 121.0 (3)
O1—C6—C5 124.1 (2) C19—C18—C17 121.7 (2)
C1—C6—C5 120.0 (3) C19—C18—H18A 119.1
O1—C7—C8 109.3 (2) C17—C18—H18A 119.1
O1—C7—H7A 109.8 C18—C19—C14 118.1 (2)
C8—C7—H7A 109.8 C18—C19—H19A 121.0
O1—C7—H7B 109.8 C14—C19—H19A 121.0
C8—C7—H7B 109.8 C17—C20—H20D 109.5
H7A—C7—H7B 108.3 C17—C20—H20A 109.5
N1—C8—N3 109.6 (2) H20D—C20—H20A 109.5
N1—C8—C7 126.9 (2) C17—C20—H20B 109.5
N3—C8—C7 123.3 (2) H20D—C20—H20B 109.5
N2—C9—N3 110.6 (2) H20A—C20—H20B 109.5
C8—N1—N2—C9 −1.4 (3) C9—S1—C10—C11 54.65 (19)
C9—N3—N4—C11 30.0 (3) N3—N4—C11—C12 −170.4 (2)
C8—N3—N4—C11 −167.9 (2) N3—N4—C11—C10 8.3 (3)
C13—O2—N5—N6 0.5 (2) S1—C10—C11—N4 −53.7 (3)
O2—N5—N6—C12 −0.3 (3) S1—C10—C11—C12 125.0 (2)
O2—N5—N6—C14 176.24 (18) N5—N6—C12—C13 0.1 (3)
C6—C1—C2—C3 −0.6 (5) C14—N6—C12—C13 −175.8 (2)
C1—C2—C3—C4 0.9 (5) N5—N6—C12—C11 170.7 (2)
C2—C3—C4—C5 −0.8 (4) C14—N6—C12—C11 −5.2 (4)
C3—C4—C5—C6 0.4 (4) N4—C11—C12—N6 18.5 (4)
C7—O1—C6—C1 174.7 (2) C10—C11—C12—N6 −160.3 (2)
C7—O1—C6—C5 −5.8 (4) N4—C11—C12—C13 −172.8 (2)
C2—C1—C6—O1 179.8 (3) C10—C11—C12—C13 8.4 (4)
C2—C1—C6—C5 0.2 (4) N5—O2—C13—O3 179.4 (2)
C4—C5—C6—O1 −179.7 (3) N5—O2—C13—C12 −0.4 (2)
C4—C5—C6—C1 −0.1 (4) N6—C12—C13—O3 −179.6 (3)
C6—O1—C7—C8 −174.6 (2) C11—C12—C13—O3 9.6 (5)
N2—N1—C8—N3 1.3 (3) N6—C12—C13—O2 0.2 (3)
N2—N1—C8—C7 175.7 (2) C11—C12—C13—O2 −170.6 (2)
C9—N3—C8—N1 −0.8 (3) N5—N6—C14—C15 −56.8 (3)
N4—N3—C8—N1 −166.3 (2) C12—N6—C14—C15 119.1 (3)
C9—N3—C8—C7 −175.4 (2) N5—N6—C14—C19 119.8 (3)
N4—N3—C8—C7 19.1 (4) C12—N6—C14—C19 −64.4 (4)
O1—C7—C8—N1 84.4 (3) C19—C14—C15—C16 −0.4 (4)
O1—C7—C8—N3 −101.9 (3) N6—C14—C15—C16 176.1 (2)
N1—N2—C9—N3 0.8 (3) C14—C15—C16—C17 0.3 (4)
N1—N2—C9—S1 178.78 (18) C15—C16—C17—C18 0.3 (4)
C8—N3—C9—N2 −0.1 (3) C15—C16—C17—C20 −179.4 (3)
N4—N3—C9—N2 164.6 (2) C16—C17—C18—C19 −0.9 (4)
C8—N3—C9—S1 −178.20 (18) C20—C17—C18—C19 178.8 (3)
N4—N3—C9—S1 −13.6 (3) C17—C18—C19—C14 0.8 (4)
C10—S1—C9—N2 154.7 (2) C15—C14—C19—C18 −0.1 (4)
C10—S1—C9—N3 −27.6 (2) N6—C14—C19—C18 −176.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10A···O3 0.97 2.26 3.026 (3) 135
C10—H10A···O3i 0.97 2.55 3.165 (3) 122
C10—H10B···O3ii 0.97 2.44 3.279 (3) 145
C19—H19A···N5iii 0.93 2.61 3.491 (3) 158

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5566).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1303. [DOI] [PMC free article] [PubMed]
  6. Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1394–o1395. [DOI] [PMC free article] [PubMed]
  7. Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010c). Acta Cryst. E66, o2162–o2163. [DOI] [PMC free article] [PubMed]
  8. Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem.71, 1049–1052.
  9. Newton, C. G. & Ramsden, C. A. (1982). Tetrahedron, 38, 2965–3011.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wagner, H. & Hill, J. B. (1974). J. Med. Chem.17, 1337–1338. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810029910/hb5566sup1.cif

e-66-o2178-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029910/hb5566Isup2.hkl

e-66-o2178-Isup2.hkl (211.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES