Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 10;66(Pt 8):m907–m908. doi: 10.1107/S1600536810024992

Racemic tricarbon­yl(η6-7-meth­oxy­flavan)chromium(0)

Johannes H van Tonder a, Barend C B Bezuidenhoudt a,*, J Marthinus Janse van Rensburg b
PMCID: PMC3007425  PMID: 21588147

Abstract

In the title compound [systematic name: tricarbonyl(η6-7-methoxy-2-phenyl-3,4-dihydro-2H-1-benzopyran)chromium(0)], [Cr(C16H16O2)(CO)3], the Cr(CO)3 unit is coordinated by the phenyl­ene ring of the flavan ligand, exhibiting a three-legged piano-stool conformation, with a point to plane distance of 1.750 (1) Å. The phenyl ring is twisted away from the fused ring system by 36.49 (5)° (r.m.s. deviation = 0.027 Å; fitted atoms are the C6 ring and the attached fused-ring C and O atoms). The dihydro­pyran ring displays a distorted envelope configuration by displacement of the phenyl-bearing and the adjacent ring C atoms from the fused-ring system plane by 0.356 (2) and 0.402 (2) Å, respectively.

Related literature

7-Meth­oxy­flavan was synthesized via hydrogenation from 7-meth­oxy­flavanone, as described by Sato et al. (2006). For coordination of 7-meth­oxy­flavan to chromium, see: Müller et al. (1999). For the importance of flavonoids in biological investigations, see: Rice-Evans & Packer (2003). For Cr(CO)3 coordination to the phenyl­ene ring of a flavanone compound, see: Dominique et al. (1999). For comparison bond distances, see: Allen et al. (1987). For related structures, see: van Tonder et al. (2009a ,b ). For the use of tricarbon­yl(arene)chromium complexes in regioselective organic synthesis, see: Muschalek et al. (2007).graphic file with name e-66-0m907-scheme1.jpg

Experimental

Crystal data

  • [Cr(C16H16O2)(CO)3]

  • M r = 376.32

  • Monoclinic, Inline graphic

  • a = 9.8422 (2) Å

  • b = 12.3850 (3) Å

  • c = 15.0146 (3) Å

  • β = 115.171 (1)°

  • V = 1656.42 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 173 K

  • 0.41 × 0.34 × 0.24 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.757, T max = 0.847

  • 12982 measured reflections

  • 3985 independent reflections

  • 3224 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.085

  • S = 1.07

  • 3985 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024992/zb2005sup1.cif

e-66-0m907-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024992/zb2005Isup2.hkl

e-66-0m907-Isup2.hkl (191.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the University of the Free State and SASOL to JHvanT is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SASOL. We would like to express our gratitude to the School of Chemistry at the University of the Witwatersrand for the use of the diffractometer. Special thanks are due to Dr M. A. Fernandes.

supplementary crystallographic information

Comment

The title compound, (I), [Cr(C16H16O2)(CO)3], where (C16H16O2) = 7-methoxyflavan, has been examined due to the general biological activity of flavanoids (Rice-Evans & Packer, 2003) and the use of tricarbonyl(arene)chromium complexes in regioselective organic synthesis (Muschalek et al., 2007).

As with the tricarbonyl(η6-flavanone)chromium(0) complex reported by Dominique et al. (1999), the Cr(CO)3 unit of the title compound is coordinated by the phenylene ring of the flavanoid backbone (Fig.1). The chromium metal centre is displaced by 1.750 (1) Å from the A-η6-coordinated arene ring centre. The dihydropyran ring displays a distorted envelope configuration by displacement of atoms C2 and C3 from the fused ring system plane, with distances of 0.356 (2) and 0.402 (2) Å respectively (r.m.s. of fitted atoms C4, C10, C5, C6, C7, C8, C9 and O5 = 0.027 °). Further molecular disorder is displayed by the phenyl ring twist away from the fused ring system plane, by 36.49 (5)°.

The molecular packing displays two types of soft intermolecular contacts, this between O2···H8 [2.682 (1) Å] forming a O2···H8—C8 angle of 152.5 (1)° and O1···H6 [2.459 (1) Å] forming a O1···H6—C6 angle of 125.9 (1)° (Fig.2).

Experimental

7-Methoxyflavan was synthesised via H2SO4 catalyzed hydrogenation (5 bar) over 10% Pd/C from 7-methoxyflavanone, as described by Sato et al. (2006). 7-Methoxyflavan-4-one (1.00 g; 3.9 mmol), 10 % Pd/C (0.10 g), 3 M H2SO4 (aq.) (1 ml), EtOH (30 ml). Purification by means of flash column-chromatography yielded 7-methoxyflavan (0.67 g; 70.6%) as a colourless oil.

Rf 0.65 (H:DCM:EtOAc; 50:50:1); 1H NMR (600 MHz, CDCl3) δ ppm 7.44 – 7.41 (2H, m, H-2' and H-6'), 7.40 – 7.37 (2H, m, H-3' and H-5'), 7.34 – 7.31 (1H, m, H-4'), 6.99 – 6.97 (1H, m, H-5), 6.50 – 6.47 (2H, m, H-6 and H-8), 5.05 (1H, dd, J = 2.37, 10.19 Hz, H-2), 3.77 (3H, s, -OCH3), 2.92 (1H, ddd, J = 6.02, 10.92, 16.08 Hz, H-4(a)), 2.74 (1H, ddd, J = 3.40, 5.12, 16.08 Hz, H-4(e)), 2.22 – 2.18 (1H, m, H-3), 2.11– 2.04 (1H, m, H-3); 13C NMR (600 MHz, CDCl3) δ ppm 24.47 (C-4), 30.19 (C-3), 55.38 (-OCH3), 77.98 (C-2), 101.71 (C-6/8), 107.54 (C-6/8), 114.01, 126.11, 127.93, 128.61, 130.05, 141.79, 155.91, 155.91, 159.23

Preparation of the title compound, tricarbonyl(A-η6-7-methoxyflavane)chromium(0), was based on a method described by Müller et al. (1999). A solution of 7-Methoxyflavane (0.27 g, 1.1 mmol) and Cr(CO)6 (0.25 g, 1.1 mmol: 1 eq.) in Bu2O:THF (9:1; 10 ml per 100 mg Cr(CO)6 was degassed with argon, using standard Schlenk techniques, and refluxed (48 h) under an oxygen free atmosphere. The reaction mixture was cooled to room temperature and the solvent evaporated in vacuo. Purification through flash column-chromatography yielded tricarbonyl(A-η6-7-methoxyflavane)chromium(0) (0.07 g; 16.6.0%) as a yellow solid. Recrystallization from diethyl ether yielded yellow cuboidal crystals.

Rf 0.23 (Hexane: Acetone; 8:2); Mp 148.4 °C; Note: A, B and C-ring labelling refers to the benzene, phenyl and dihydropyrane rings respectively. 1H NMR (600 MHz, CDCl3) δ ppm 7.49 (2H, d, J = 7.15 Hz, H-2' and H-6'), 7.41 (2H, dd, J = 7.15, 8.66 Hz, H-3' and H-5'), 7.39 – 7.35 (1H, m, H-4'), 5.65 (1H, d, J = 6.61 Hz, H-5), 5.15 (1H, s, H-8), 4.90 – 4.86 (2H, m, H-2 and H-6), 3.72 (3H, s, -OCH3), 2.93 (1H, ddd, J = 4.89, 12.43, 15.65 Hz, H-4(a)), 2.54 (1H, dd, J = 4.14, 15.65 Hz, H-4(e)), 2.31 (1H, ddd, J = 4.14, 12.43, 13.68 Hz, H-3(a)), 2.13 (1H, dd, J = 4.89, 13.68 Hz, H-3(e)); 13C NMR (600 MHz, CDCl3) δ ppm 25.52 (C-4), 29.52 (C-3), 55.86 (-OCH3), 68.31 (C-8), 74.42 (C-2/6), 80.56 (C-2/6), 89.11, 94.55 (C-5), 126.61, 128.83, 128.89, 139.62, 140.30, 143.33, 234.44 (-Cr(CO)3); MS m/z 376 (M+, 13.0), 344 (0.2), 320 (0.1), 292 (70.7), 277 (0.2), 256 (0.1), 240 (5.8), 225 (0.5), 209 (0.3), 188 (100.0), 173 (0.4), 146 (10.0), 137 (2.1), 121 (2.0), 104 (5.1).

Refinement

The H atoms were positioned geometrically and refined using a riding model with fixed C—H distances of 0.93 Å (ArH) [Uiso(H) = 1.2Ueq], 1.00 Å (CH) [Uiso(H) = 1.2Ueq], 0.99 Å (CH2) [Uiso(H) = 1.2Ueq] and 0.96 Å (CH3) [Uiso(H) = 1.5Ueq]. Initial positions of methyl H-atoms were obtained from fourier difference and refined as a fixed rotor.

The highest density peak is 0.25 located 0.66 Å from C1' and the deepest hole is -0.40 located at 0.50 Å from Cr.

Figures

Fig. 1.

Fig. 1.

A view of (I) showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

Indication of molecular packing in the unit-cell. Symmetry operators 1) x; y; z. 2) 1 - x; 0.5 + y; 1.5 - z.

Crystal data

[Cr(C16H16O2)(CO)3] F(000) = 776
Mr = 376.32 Dx = 1.509 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5285 reflections
a = 9.8422 (2) Å θ = 2.2–28.3°
b = 12.3850 (3) Å µ = 0.72 mm1
c = 15.0146 (3) Å T = 173 K
β = 115.171 (1)° Prism, yellow
V = 1656.42 (6) Å3 0.41 × 0.34 × 0.24 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3224 reflections with I > 2σ(I)
φ and ω scans Rint = 0.030
Absorption correction: multi-scan (Bruker, 2004) θmax = 28°, θmin = 2.2°
Tmin = 0.757, Tmax = 0.847 h = −11→12
12982 measured reflections k = −16→16
3985 independent reflections l = −19→19

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.0884P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085 (Δ/σ)max = 0.001
S = 1.07 Δρmax = 0.25 e Å3
3985 reflections Δρmin = −0.40 e Å3
227 parameters

Special details

Experimental. The intensity data was collected on a Bruker Apex II CCD diffractometer using a frame width of 0.5° covering up to θ = 28° with 100 % completeness accomplished.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1' 1.01976 (18) 0.59116 (14) 0.84890 (12) 0.0260 (3)
C2' 0.9566 (2) 0.69062 (15) 0.85055 (13) 0.0325 (4)
H2' 0.8506 0.6988 0.8213 0.039*
C2 0.92726 (18) 0.49179 (14) 0.80339 (12) 0.0268 (4)
H2 0.9703 0.4553 0.7618 0.032*
C3' 1.0487 (2) 0.77884 (16) 0.89526 (14) 0.0385 (4)
H3' 1.0052 0.8471 0.8958 0.046*
C3 0.92236 (18) 0.41073 (13) 0.87814 (12) 0.0276 (4)
H3A 0.8755 0.4443 0.9181 0.033*
H3B 1.0257 0.3886 0.923 0.033*
C4 0.83175 (18) 0.31200 (14) 0.82448 (12) 0.0272 (4)
H4A 0.8908 0.2687 0.798 0.033*
H4B 0.8107 0.2663 0.8713 0.033*
C4' 1.2029 (2) 0.76723 (16) 0.93867 (13) 0.0380 (4)
H4' 1.2654 0.8272 0.9696 0.046*
C5' 1.2657 (2) 0.66846 (16) 0.93694 (13) 0.0360 (4)
H5' 1.3717 0.6603 0.967 0.043*
C5 0.56441 (18) 0.27492 (13) 0.69612 (12) 0.0260 (4)
H5 0.5723 0.2037 0.7214 0.031*
C6 0.43161 (18) 0.30503 (13) 0.61485 (12) 0.0263 (3)
H6 0.3532 0.2541 0.5842 0.032*
C6' 1.17553 (18) 0.58135 (15) 0.89185 (12) 0.0295 (4)
H6' 1.2201 0.5138 0.89 0.035*
C7 0.41667 (18) 0.41122 (13) 0.57975 (11) 0.0247 (3)
C8 0.53223 (18) 0.48677 (13) 0.62755 (12) 0.0251 (3)
H8 0.5183 0.5606 0.6085 0.03*
C9 0.66817 (17) 0.45213 (14) 0.70352 (12) 0.0242 (3)
C10 0.68615 (17) 0.34612 (13) 0.74146 (12) 0.0237 (3)
C11 0.56076 (19) 0.50205 (13) 0.85013 (13) 0.0269 (4)
C12 0.42375 (19) 0.32289 (14) 0.82151 (13) 0.0295 (4)
C13 0.29284 (19) 0.48252 (14) 0.70530 (13) 0.0298 (4)
C71 0.17072 (19) 0.37892 (16) 0.45371 (13) 0.0335 (4)
H71A 0.2029 0.3181 0.4255 0.05*
H71B 0.0894 0.4179 0.401 0.05*
H71C 0.1349 0.3518 0.5013 0.05*
O1 0.61634 (16) 0.55726 (10) 0.91861 (10) 0.0436 (4)
O2 0.39278 (16) 0.26735 (12) 0.87217 (10) 0.0486 (4)
O3 0.17872 (15) 0.52563 (12) 0.67906 (11) 0.0482 (4)
O5 0.77684 (12) 0.52853 (9) 0.73998 (9) 0.0305 (3)
O7 0.29490 (12) 0.45045 (10) 0.50235 (8) 0.0303 (3)
Cr 0.47389 (3) 0.413031 (19) 0.743218 (18) 0.01990 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1' 0.0229 (8) 0.0363 (9) 0.0193 (8) −0.0040 (7) 0.0096 (7) 0.0017 (7)
C2' 0.0282 (9) 0.0401 (10) 0.0317 (10) −0.0012 (8) 0.0152 (8) 0.0017 (8)
C2 0.0198 (8) 0.0364 (9) 0.0228 (8) −0.0006 (7) 0.0077 (7) 0.0013 (7)
C3' 0.0494 (11) 0.0344 (10) 0.0391 (11) −0.0015 (9) 0.0259 (10) 0.0000 (8)
C3 0.0239 (8) 0.0319 (9) 0.0230 (8) 0.0030 (7) 0.0062 (7) 0.0046 (7)
C4 0.0241 (8) 0.0281 (8) 0.0265 (9) 0.0044 (7) 0.0079 (7) 0.0039 (7)
C4' 0.0444 (11) 0.0425 (11) 0.0286 (10) −0.0176 (9) 0.0170 (9) −0.0023 (8)
C5' 0.0278 (9) 0.0524 (12) 0.0263 (9) −0.0110 (9) 0.0100 (8) 0.0034 (8)
C5 0.0286 (8) 0.0203 (8) 0.0280 (9) 0.0025 (7) 0.0110 (7) −0.0027 (6)
C6 0.0261 (8) 0.0254 (8) 0.0256 (8) −0.0011 (7) 0.0092 (7) −0.0063 (7)
C6' 0.0248 (8) 0.0389 (10) 0.0247 (9) −0.0013 (7) 0.0105 (7) 0.0037 (7)
C7 0.0209 (8) 0.0331 (9) 0.0195 (8) 0.0020 (7) 0.0081 (6) 0.0009 (7)
C8 0.0243 (8) 0.0279 (8) 0.0232 (8) −0.0002 (7) 0.0102 (7) 0.0061 (7)
C9 0.0211 (8) 0.0306 (8) 0.0216 (8) −0.0023 (7) 0.0098 (7) 0.0017 (7)
C10 0.0229 (8) 0.0258 (8) 0.0227 (8) 0.0021 (6) 0.0101 (7) −0.0003 (6)
C11 0.0281 (9) 0.0203 (8) 0.0292 (9) 0.0040 (7) 0.0090 (7) 0.0041 (7)
C12 0.0291 (9) 0.0308 (9) 0.0269 (9) −0.0074 (7) 0.0104 (7) −0.0030 (7)
C13 0.0274 (9) 0.0331 (9) 0.0280 (9) −0.0003 (7) 0.0108 (7) −0.0054 (7)
C71 0.0206 (8) 0.0466 (11) 0.0286 (9) −0.0041 (8) 0.0058 (7) 0.0003 (8)
O1 0.0546 (9) 0.0264 (6) 0.0327 (7) 0.0063 (6) 0.0020 (7) −0.0075 (6)
O2 0.0537 (9) 0.0537 (9) 0.0381 (8) −0.0232 (7) 0.0195 (7) 0.0062 (7)
O3 0.0302 (7) 0.0592 (9) 0.0495 (9) 0.0148 (7) 0.0115 (7) −0.0084 (7)
O5 0.0203 (6) 0.0333 (7) 0.0295 (6) −0.0058 (5) 0.0024 (5) 0.0110 (5)
O7 0.0231 (6) 0.0369 (7) 0.0243 (6) −0.0018 (5) 0.0037 (5) 0.0050 (5)
Cr 0.02079 (14) 0.01811 (14) 0.02113 (14) −0.00032 (10) 0.00923 (11) 0.00022 (10)

Geometric parameters (Å, °)

C1'—C2' 1.385 (3) C6—C7 1.401 (2)
C1'—C6' 1.393 (2) C6—Cr 2.2350 (16)
C1'—C2 1.510 (2) C6—H6 0.95
C2'—C3' 1.396 (3) C6'—H6' 0.95
C2'—H2' 0.95 C7—O7 1.3558 (19)
C2—O5 1.4513 (19) C7—C8 1.411 (2)
C2—C3 1.522 (2) C7—Cr 2.2729 (16)
C2—H2 1 C8—C9 1.406 (2)
C3'—C4' 1.381 (3) C8—Cr 2.2424 (16)
C3'—H3' 0.95 C8—H8 0.95
C3—C4 1.526 (2) C9—O5 1.3568 (19)
C3—H3A 0.99 C9—C10 1.412 (2)
C3—H3B 0.99 C9—Cr 2.2838 (16)
C4—C10 1.505 (2) C10—Cr 2.2580 (16)
C4—H4A 0.99 C11—O1 1.160 (2)
C4—H4B 0.99 C11—Cr 1.8319 (17)
C4'—C5' 1.375 (3) C12—O2 1.159 (2)
C4'—H4' 0.95 C12—Cr 1.8344 (18)
C5'—C6' 1.378 (2) C13—O3 1.151 (2)
C5'—H5' 0.95 C13—Cr 1.8376 (18)
C5—C6 1.407 (2) C71—O7 1.433 (2)
C5—C10 1.408 (2) C71—H71A 0.98
C5—Cr 2.1808 (16) C71—H71B 0.98
C5—H5 0.95 C71—H71C 0.98
C2'—C1'—C6' 118.91 (16) O5—C9—C8 115.42 (14)
C2'—C1'—C2 122.96 (15) O5—C9—C10 122.93 (14)
C6'—C1'—C2 118.12 (15) C8—C9—C10 121.58 (15)
C1'—C2'—C3' 120.00 (16) O5—C9—Cr 130.27 (11)
C1'—C2'—H2' 120 C8—C9—Cr 70.31 (9)
C3'—C2'—H2' 120 C10—C9—Cr 70.90 (9)
O5—C2—C1' 106.96 (13) C5—C10—C9 116.89 (14)
O5—C2—C3 110.32 (13) C5—C10—C4 122.62 (14)
C1'—C2—C3 113.95 (14) C9—C10—C4 120.46 (14)
O5—C2—H2 108.5 C5—C10—Cr 68.55 (9)
C1'—C2—H2 108.5 C9—C10—Cr 72.88 (9)
C3—C2—H2 108.5 C4—C10—Cr 130.77 (11)
C4'—C3'—C2' 120.27 (18) O1—C11—Cr 179.12 (15)
C4'—C3'—H3' 119.9 O2—C12—Cr 178.82 (16)
C2'—C3'—H3' 119.9 O3—C13—Cr 178.24 (16)
C2—C3—C4 109.51 (14) O7—C71—H71A 109.5
C2—C3—H3A 109.8 O7—C71—H71B 109.5
C4—C3—H3A 109.8 H71A—C71—H71B 109.5
C2—C3—H3B 109.8 O7—C71—H71C 109.5
C4—C3—H3B 109.8 H71A—C71—H71C 109.5
H3A—C3—H3B 108.2 H71B—C71—H71C 109.5
C10—C4—C3 110.43 (13) C9—O5—C2 117.07 (12)
C10—C4—H4A 109.6 C7—O7—C71 117.83 (13)
C3—C4—H4A 109.6 C11—Cr—C12 87.55 (7)
C10—C4—H4B 109.6 C11—Cr—C13 91.11 (7)
C3—C4—H4B 109.6 C12—Cr—C13 89.65 (8)
H4A—C4—H4B 108.1 C11—Cr—C5 130.80 (7)
C5'—C4'—C3' 119.72 (18) C12—Cr—C5 89.36 (7)
C5'—C4'—H4' 120.1 C13—Cr—C5 137.98 (7)
C3'—C4'—H4' 120.1 C11—Cr—C6 164.20 (7)
C4'—C5'—C6' 120.35 (17) C12—Cr—C6 100.73 (7)
C4'—C5'—H5' 119.8 C13—Cr—C6 102.28 (7)
C6'—C5'—H5' 119.8 C5—Cr—C6 37.14 (6)
C6—C5—C10 122.61 (15) C11—Cr—C8 104.82 (7)
C6—C5—Cr 73.52 (9) C12—Cr—C8 166.28 (7)
C10—C5—Cr 74.51 (9) C13—Cr—C8 95.93 (7)
C6—C5—H5 118.7 C5—Cr—C8 78.10 (6)
C10—C5—H5 118.7 C6—Cr—C8 65.85 (6)
Cr—C5—H5 125 C11—Cr—C10 98.15 (7)
C7—C6—C5 119.02 (15) C12—Cr—C10 106.65 (7)
C7—C6—Cr 73.38 (9) C13—Cr—C10 161.49 (7)
C5—C6—Cr 69.34 (9) C5—Cr—C10 36.94 (6)
C7—C6—H6 120.5 C6—Cr—C10 66.68 (6)
C5—C6—H6 120.5 C8—Cr—C10 66.26 (6)
Cr—C6—H6 129 C11—Cr—C7 139.56 (7)
C5'—C6'—C1' 120.73 (17) C12—Cr—C7 132.48 (7)
C5'—C6'—H6' 119.6 C13—Cr—C7 84.71 (7)
C1'—C6'—H6' 119.6 C5—Cr—C7 65.78 (6)
O7—C7—C6 124.88 (15) C6—Cr—C7 36.20 (6)
O7—C7—C8 115.21 (14) C8—Cr—C7 36.40 (6)
C6—C7—C8 119.89 (14) C10—Cr—C7 77.84 (6)
O7—C7—Cr 130.14 (11) C11—Cr—C9 88.31 (7)
C6—C7—Cr 70.42 (9) C12—Cr—C9 141.22 (7)
C8—C7—Cr 70.62 (9) C13—Cr—C9 128.98 (7)
C9—C8—C7 119.56 (15) C5—Cr—C9 65.09 (6)
C9—C8—Cr 73.51 (9) C6—Cr—C9 76.78 (6)
C7—C8—Cr 72.98 (9) C8—Cr—C9 36.18 (6)
C9—C8—H8 120.2 C10—Cr—C9 36.22 (6)
C7—C8—H8 120.2 C7—Cr—C9 64.57 (6)
Cr—C8—H8 124.9
C6'—C1'—C2'—C3' −0.4 (3) C7—C6—Cr—C9 −64.80 (10)
C2—C1'—C2'—C3' 178.97 (16) C5—C6—Cr—C9 66.02 (10)
C2'—C1'—C2—O5 17.3 (2) C9—C8—Cr—C11 65.59 (11)
C6'—C1'—C2—O5 −163.39 (14) C7—C8—Cr—C11 −165.45 (10)
C2'—C1'—C2—C3 −104.93 (18) C9—C8—Cr—C12 −88.2 (3)
C6'—C1'—C2—C3 74.42 (19) C7—C8—Cr—C12 40.8 (3)
C1'—C2'—C3'—C4' −0.5 (3) C9—C8—Cr—C13 158.32 (10)
O5—C2—C3—C4 61.99 (17) C7—C8—Cr—C13 −72.72 (10)
C1'—C2—C3—C4 −177.69 (14) C9—C8—Cr—C5 −63.83 (10)
C2—C3—C4—C10 −47.68 (18) C7—C8—Cr—C5 65.13 (10)
C2'—C3'—C4'—C5' 0.6 (3) C9—C8—Cr—C6 −100.86 (11)
C3'—C4'—C5'—C6' 0.3 (3) C7—C8—Cr—C6 28.10 (9)
C10—C5—C6—C7 −2.7 (2) C9—C8—Cr—C10 −26.92 (10)
Cr—C5—C6—C7 56.02 (14) C7—C8—Cr—C10 102.04 (10)
C10—C5—C6—Cr −58.68 (14) C9—C8—Cr—C7 −128.96 (15)
C4'—C5'—C6'—C1' −1.2 (3) C7—C8—Cr—C9 128.96 (15)
C2'—C1'—C6'—C5' 1.2 (3) C5—C10—Cr—C11 155.21 (10)
C2—C1'—C6'—C5' −178.16 (16) C9—C10—Cr—C11 −75.77 (10)
C5—C6—C7—O7 −179.96 (15) C4—C10—Cr—C11 40.00 (16)
Cr—C6—C7—O7 −125.88 (16) C5—C10—Cr—C12 65.34 (11)
C5—C6—C7—C8 −1.7 (2) C9—C10—Cr—C12 −165.64 (10)
Cr—C6—C7—C8 52.36 (14) C4—C10—Cr—C12 −49.87 (16)
C5—C6—C7—Cr −54.07 (13) C5—C10—Cr—C13 −85.5 (2)
O7—C7—C8—C9 −174.85 (14) C9—C10—Cr—C13 43.5 (3)
C6—C7—C8—C9 6.7 (2) C4—C10—Cr—C13 159.3 (2)
Cr—C7—C8—C9 59.01 (14) C9—C10—Cr—C5 129.02 (14)
O7—C7—C8—Cr 126.14 (13) C4—C10—Cr—C5 −115.21 (18)
C6—C7—C8—Cr −52.27 (14) C5—C10—Cr—C6 −29.40 (9)
C7—C8—C9—O5 175.10 (14) C9—C10—Cr—C6 99.61 (10)
Cr—C8—C9—O5 −126.16 (14) C4—C10—Cr—C6 −144.62 (16)
C7—C8—C9—C10 −7.7 (2) C5—C10—Cr—C8 −102.12 (10)
Cr—C8—C9—C10 51.09 (14) C9—C10—Cr—C8 26.90 (9)
C7—C8—C9—Cr −58.74 (14) C4—C10—Cr—C8 142.67 (16)
C6—C5—C10—C9 1.9 (2) C5—C10—Cr—C7 −65.70 (10)
Cr—C5—C10—C9 −56.37 (13) C9—C10—Cr—C7 63.32 (10)
C6—C5—C10—C4 −176.23 (15) C4—C10—Cr—C7 179.09 (16)
Cr—C5—C10—C4 125.55 (15) C5—C10—Cr—C9 −129.02 (14)
C6—C5—C10—Cr 58.22 (14) C4—C10—Cr—C9 115.77 (18)
O5—C9—C10—C5 −179.62 (15) O7—C7—Cr—C11 −85.11 (17)
C8—C9—C10—C5 3.3 (2) C6—C7—Cr—C11 155.29 (11)
Cr—C9—C10—C5 54.18 (13) C8—C7—Cr—C11 21.99 (14)
O5—C9—C10—C4 −1.5 (2) O7—C7—Cr—C12 85.04 (17)
C8—C9—C10—C4 −178.53 (15) C6—C7—Cr—C12 −34.57 (13)
Cr—C9—C10—C4 −127.70 (15) C8—C7—Cr—C12 −167.87 (11)
O5—C9—C10—Cr 126.20 (16) O7—C7—Cr—C13 0.38 (15)
C8—C9—C10—Cr −50.83 (14) C6—C7—Cr—C13 −119.22 (11)
C3—C4—C10—C5 −163.05 (15) C8—C7—Cr—C13 107.48 (11)
C3—C4—C10—C9 18.9 (2) O7—C7—Cr—C5 149.67 (16)
C3—C4—C10—Cr −74.28 (18) C6—C7—Cr—C5 30.06 (9)
C8—C9—O5—C2 −167.67 (14) C8—C7—Cr—C5 −103.24 (10)
C10—C9—O5—C2 15.1 (2) O7—C7—Cr—C6 119.60 (19)
Cr—C9—O5—C2 107.28 (16) C8—C7—Cr—C6 −133.30 (14)
C1'—C2—O5—C9 −169.74 (13) O7—C7—Cr—C8 −107.10 (18)
C3—C2—O5—C9 −45.31 (19) C6—C7—Cr—C8 133.30 (14)
C6—C7—O7—C71 1.2 (2) O7—C7—Cr—C10 −173.42 (16)
C8—C7—O7—C71 −177.07 (14) C6—C7—Cr—C10 66.97 (10)
Cr—C7—O7—C71 −91.82 (17) C8—C7—Cr—C10 −66.33 (10)
C6—C5—Cr—C11 −164.93 (10) O7—C7—Cr—C9 −137.65 (16)
C10—C5—Cr—C11 −33.24 (13) C6—C7—Cr—C9 102.75 (10)
C6—C5—Cr—C12 108.86 (11) C8—C7—Cr—C9 −30.55 (9)
C10—C5—Cr—C12 −119.45 (10) O5—C9—Cr—C11 −11.15 (14)
C6—C5—Cr—C13 20.10 (15) C8—C9—Cr—C11 −118.27 (11)
C10—C5—Cr—C13 151.78 (11) C10—C9—Cr—C11 106.27 (10)
C10—C5—Cr—C6 131.69 (15) O5—C9—Cr—C12 −95.13 (17)
C6—C5—Cr—C8 −65.53 (10) C8—C9—Cr—C12 157.75 (12)
C10—C5—Cr—C8 66.16 (10) C10—C9—Cr—C12 22.30 (15)
C6—C5—Cr—C10 −131.69 (15) O5—C9—Cr—C13 78.91 (16)
C6—C5—Cr—C7 −29.35 (10) C8—C9—Cr—C13 −28.21 (13)
C10—C5—Cr—C7 102.34 (10) C10—C9—Cr—C13 −163.67 (10)
C6—C5—Cr—C9 −101.28 (11) O5—C9—Cr—C5 −148.41 (16)
C10—C5—Cr—C9 30.41 (9) C8—C9—Cr—C5 104.47 (11)
C7—C6—Cr—C11 −84.6 (3) C10—C9—Cr—C5 −30.99 (9)
C5—C6—Cr—C11 46.3 (3) O5—C9—Cr—C6 174.13 (15)
C7—C6—Cr—C12 154.79 (10) C8—C9—Cr—C6 67.01 (10)
C5—C6—Cr—C12 −74.38 (11) C10—C9—Cr—C6 −68.45 (10)
C7—C6—Cr—C13 62.79 (11) O5—C9—Cr—C8 107.12 (18)
C5—C6—Cr—C13 −166.38 (11) C10—C9—Cr—C8 −135.45 (15)
C7—C6—Cr—C5 −130.82 (15) O5—C9—Cr—C10 −117.42 (18)
C7—C6—Cr—C8 −28.25 (9) C8—C9—Cr—C10 135.45 (15)
C5—C6—Cr—C8 102.57 (11) O5—C9—Cr—C7 137.85 (16)
C7—C6—Cr—C10 −101.56 (10) C8—C9—Cr—C7 30.73 (10)
C5—C6—Cr—C10 29.26 (9) C10—C9—Cr—C7 −104.73 (10)
C5—C6—Cr—C7 130.82 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2005).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2004). SAINT-Plus, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Dominique, S., Lepoivre, A., Lemiere, G., Rapatopoulou, C. P. & Klouras, N. D. (1999). Monatsh. Chem.130, 305–311.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Müller, T. J. J., Ansorge, M. & Polburn, K. (1999). J. Organomet. Chem.578, 252–259.
  9. Muschalek, B., Weidner, I. & Butenschön, H. (2007). J. Organomet. Chem.692, 2415–2424.
  10. Rice-Evans, C. A. & Packer, L. (2003). Flavonoids in Health and Disease, 2nd ed. New York: Marcel Dekker Inc.
  11. Sato, S., Hiroe, K., Kumazawa, T. & Jun-ichi, O. (2006). Carbohydr. Res.341, 1091–1095. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343. [DOI] [PMC free article] [PubMed]
  14. Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024992/zb2005sup1.cif

e-66-0m907-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024992/zb2005Isup2.hkl

e-66-0m907-Isup2.hkl (191.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES